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NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

RESEARCH MEMORANDUM

DAMPING IN PITCH OF LOW-ASPECT-RATIO WINGS

AT SUESONIC AND SUPERSONIC SPEEDS

By Murray Tobak

SUMMARY

The concept of indicial functions is applied to the analysis of the
aerodynamic phenomena associated with the short-period pitching mode of
wings in subsonic and supersonic flight. Simple physical relationships
are pointed out and are used to study the effect on the rotary-damping-
moment coefficient of changes in center-of-gravity position, Mach number,
aspect ratio, plan form, frequency, and thickness. Qualitative conclu-
sions are drawn from the results of this investigation and are compared
with the results of experiments for a series of low-aspect-ratio wing-
body combinations having triangular, swept, and unswept wing plan forms.

Results of the experimental investigation, which were obtained by a
single-degree-of-freedom free-oscillation technique over the Mach number
ranges 0.6 to 0.9 and 1.2 to 1.9, were in good agreement with the results
of theoretical computations. The predictions of ranges of supersonic
Mach nuxler and center-of-gravity positions over which dynamic instabil-
ity may be expected, of the beneficial effect on the damping moment of a
reduction in aspect ratio, and of only a small effect of thickness on the
damping moment were confirmed by the experimental results.

t
The occurrence at high subsonic Mach numbers of small-amplitude

self-sustained pitching oscillations is noted, and a hypothesis is
advanced for its explanation.

INTRODUCTION

In the classical study of the longitudinal motion of an aircraft,
it is usually found that the motion resulting from a small equilibrium-
destroying disturbance consists of two modes: one, a lightly damped, low-
frequency motion at essentially constant attitude, called the phagoid
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oscillation; the other, a rotary-pitching and plunging oscillation of
high frequency (relative to the phugoid frequency) called the short-
period oscillation. The phugoid oscillation has generally been described
as resulting from a slow interchange of potential and kinetic energy as
the aircraft experiences periodic variations in airspeed and altitude.
The character of the phugoid motion as influenced by airspeed, altitude,
and aircraft geometry has been well understood for some time (see, e.g.,
ref. 1). The short-period motion, on the other hand, having in the past
been found to be highly damped and of short duration, has been the cause
of no concern. Its characteristics therefore have not been as fully
investigated as those of the phugoid oscillation. With the advent of
flight at speeds approaching and exceeding the speed of sound, however,
the loss of rotary damping occurring in practically all aircraft at
speeds near the sonic speed has caused renewed interest in the short-
period pitching mode. Unlike the easily controlled phugoid oscillation,
the deterioration of damping in the short-period mode is of serious con-
cern to the pilot, since the period of the oscillation can be of the
same order of magnitude as the pilot's reaction time. The oscillation
may therefore be difficult or even impossible for the pilot to control
manually. Furthermore, the additional load imposed upon the airframe
due to a rapid growth of the amplitude of a negatively damped oscillation
makes possible the occurrence of structural failure. It is therefore of
considerable interest to obtain an understanding of the nature of the
short-period mode, parallel to that which has been gained of the phugoid
mode.

One means of viewing the aerodynamic phenomena occurring during the
short-period oscillation from a fundamental standpoint is through appli-
cation of the concept of indicial functions. In this approach, the var-
iations with time of the aircraft angle of attack and angular velocity
during the oscillation are replaced by a large number of small instanta-
neous or step changes. The transient aerodynamic reactions to these step
changes are termed "indicial functions," and have been calculated theo-
retically for several classes of wings (refs. 2 to 6). By suitable
superposition of these results (refs. 7 to 9), the aerodynamic forces and
moments caused by the given maneuver can be studied. It will be the
purpose of this report to make such a study for the simplified case of an
aircraft performing single-degree-of-freedom rotary oscillations. For
this maneuver, which corresponds to the short-period oscillation when the
plunging velocity of the aircraft is zero, the use of simple physical
relationships associated with the indicial function concept enables
qualitative studies to be made of the separate effects on the aerodynamic
forces and moments of changes in Mach number, aspect ratio, plan form,
frequency, and thickness. Results of this investigation are then com-
pared with the results of experiments with a group of low-aspect-ratio
wing-body combinations. The tests were conducted in the Ames 6- by 6-foot
supersonic wind tunnel and were similar in technique to those reported in
reference 10.
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NOTATION

A aspect ratio, b /S

CL lift coefficient, lift/qoS

Cm pitching-moment coefficient, pitching moment/qoS

Cp pressure coefficient, --

I moment of inertia, slug-ft
2

Mo free-stream Mach number, Vo/ao

R Reynolds number, based on wing mean aerodynamic chord

S wing area, including portion enclosed by body, sq ft

Vo  flight speed, ft/sec

ao  speed of sound in free stream, ft/sec

b wing span, ft

co  wing root chord, ft

chr,2 ob/2 (2
wing mean aerodynamic chordJ, E (local chord) dy

e base of natural logarithms

k reduced frequency parameter, wE/2Vo

Ap local loading at plan-form surface,
pressure lower surface - pressure upper surface

qo

q angular velocity due to pitchingp radians/sec

qo free-stream dynamic pressure, i Povo2  lb/sq ft

t time, sec

ta time required following an instantaneous change in angle of attack
or angular velocity for the transient lift or moment to attain
steady state, sec
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x,yz rectangular coordinates

Xa.c. distance from leading edge of M.A.C. to aerodynamic center, ft

xo  distance from leading edge of M.A.C. to axis of rotation, ft

Lxo Xa.c. - xo

M angle of attack of wing center line with respect to free-stream
direction (sketch a)

Y ratio of specific heat at constant pressure to that at constant

volume

6 airfoil-thickness ratio, maximum thickness/chord

e angle of wing center line with respect to horizontal axis
(sketch a)

V acute angle between wing plane of symmetry and trailing edge
(sketch p)

Po free-stream density, slugs/cu ft

W angular frequency of oscillation, radians/sec

ca distance traveled, measured in half M.A.C. lengths, in the time
interval ta, 2Vota/

When m, 6, and q are used as subscripts, a nondimensional deriv-
ative is indicated, and this derivative is evaluated as the independent
variable (m,&, or q) approaches zero. For example,

CM L JM& 6
CC

Cma [1G
2VV

L 2VoJ qo
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THEORY

Application of Indicial Functions to the Aerodynamic
Theory of Unsteady Flows

One of the most useful tools in the study of unsteady flows is the
concept of indicial aerodynamic functions which may be defined briefly
as the aerodynamic response of the airfoil as a function of time to an
instantaneous change in one of the conditions determining the aerody-
namic properties of the airfoil in a steady flow. Theoretical aerody-
namic indicial functions were first derived by Wagner (ref. 2) for the
two-dimensional wing in incompressible flow. More recently, these
results have been extended by Heaslet and Lomax to cover the compressible
case for both subsonic and supersonic speeds (ref. 4). In addition,
theoretical indicial functions have now been obtained for both wide and
slender triangular wings and rectangular wings, all for supersonic speeds
(refs. 4 to 6).

The indicial function derives its usefulness primarily through the
ease with which it lends itself to the powerful and well-established
methods of the operational calculus (refs.7 to 9). With the use of these
methods, the aerodynamic forces and moments caused by arbitrary motions
of the airframe can be studied from a fundamental standpoint. Because of
the wide range of applicability of this means of approach in unsteady flow
analyses, a considerable portion of the succeeding discussibn is devoted
to the fundamentals involved.

Definition of coordinate system.- In the succeeding analysis the
stability system of axes is used. The origin of the coordinate system
4s placed in the airfoil so that the y axis which is perpendicular to
the vertical plane of symmetry is coincident with the axis of rotation of
the airfoil; the positive branch of the x axis is pointed in the direc-
tion of flight; and the z axis lies in the vertical plane of symmetry,
positive downward. The angle of attack a is measured as the angle
between the chord plane of the airfoil and the xy plane, and is shown
as positive in sketch (a). The angle of pitch G is the angle between
the chord plane of the airfoil
and the horizontal plane (an
arbitrary reference) and is also
shown positive in sketch (a).
Forces are measured as positive
upward, whereas pitching moments
are positive when tending to
increase the angle of pitch in
the positive direction. When
the airspeed Vo  is constant Sketch (a)
which corresponds to the
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condition under study, the translatory and angular motions of the air-
foil with respect to any system of coordinates are defined if the time
histories of the angle of attack m and the angle of pitch e and
their derivatives are known. For purposes of clarity, two different
harmonic motions of the aircraft are shown, illustrating the difference
between a flight path which involves a constant angle of attack and a
varying angle of pitch (sketch (b)) and one which involves a constant
angle of pitch and a varying angle of attack (sketch (c)).

flisht Path

agle of pitch 4@ 0nelo Of pitch &0
&agl of attack * 0 eAle Of attack &6

Sketch (b) Sketch (c)

Now consider the case of a wing executing harmonic rotary oscilla-
tions about the y axis while the origin of the coordinate system
traverses a level path at constant velocity Vo . This case corresponds
to that of a wind-tunnel model mounted to permit single-degree-of-
freedom rotary oscillations, or to the short-period mode of an aircraft
in flight when the plunging velocity of the center of gravity is zero.
Here a and e are equal, so that the maneuver is defined by one vari-
able, the time history of either m or 0. Let the angle of attack
be a and the angular velocity be q (q = de/dt = dm/dt). At any
instant, the normal velocity at any point on the airfoil surface is com-
posed of two parts, one due to the instantaneous angle of attack aVo,
the other due to the angular velocity at the same instant -qx (see
sketch (d)). These are two of the instantaneous boundary conditions of
the unsteady flow.

normal volocity &" o
d to igV af attack e

normal voelfcty -Wq due

Sketch (d)
CONFIDENTIAL
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Solutions for the aerodynamic forces and moments which correspond
to these boundary conditions may be derived by a number of methods
involving various degrees of approximation. In succeeding sections,
the use of the concept of indicial functions and the principle of super-
position for this purpose will be illustrated and compared with other
current widely used methods.

Concept of indicial functions.- In order to illustrate this concept,
assume that the airfoil under consideration has been flying a level path
at zero angle of attack. At some time, which is designated time zero,
the wing is caused to attain simultaneously a constant angle of attack M
and angular velocity q. The normal velocity of the flow next to the
surface of the airfoil therefore changes discontinuously from zero to a
pattern that is constant with time and identical in shape to the pattern
shown previously in sketch (d). The lift and pitching moment that
result are of a transient character and attain their steady-state values
corresponding to these new boundary conditions only after a significant
interval of time has passed. It should be noted there exists an essen-
tial difference between the length of this time interval at subsonic and
supersonic speeds. At supersonic speeds, the vorticity shed into the
airfoil wake cannot influence the flow about the airfoil but at subsonic
speeds this influence exists for all time. The result is that the lift
and moment reach steady-state values in a finite time at supersonic
speeds but approach these values asymptotically at subsonic speeds. In
either case, however, the time responses in lift and moment to the step
changes in a and q are termed indicial functions. Sketch (e) illus-
trates typical subsonic and supersonic indicial lift responses to a step
change in the angle of attack.

tIfl 1111111111111111 tI 1ff ITI T1T -ft0 0

Sketch (e)
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It is obvious that the time history of the wing motion during a
short-period oscillation may be broken down into an infinite number of
infinitesimally small step changes in the angle of attack and step
changes in the angular velocity. The summation of the indicial lift and
moment for these steps then yields the total lift and moment at any pre-
scribed time. In sketch (f), the mechanics of the procedure are illus-
trated for an arbitrary angle-of-attack variation. Here, the given

angle-of-attack variation is
replaced by a number of small

I/ step changes. Within each step
the corresponding response in
lift is shown plotted for con-
venience. It is then apparent
that the total lift at time t
is equal to the sum of the
increments of lift in each step
at time t. As indicated by
the leaders, however, it is
clear that the increments of
lift for the various steps at
time t are equivalent to
increments in the first step

_ at time t - tj. Alterna-
-' tively, then, the total lift

at time t can be written as1

Sketch (f)
t

CL(t) = CL,(t)cL(O) + j CL(t-tl) L- (t)At1  (1)

0

After a transformation of variables, t - tj = T. and letting the incre-

ment of time approach zero, equation (1) can be rewritten in a form of
Duhamel's integral (see, e.g., ref. 9)

CL(t) =-. ft CL ( r)a ( t T)dT (2)

iHere, and in the remainder of this report, the use of parentheses is
reserved solely for the indication of functional dependence. Thus,
for example, in equation (1) the term CL,(t-t) is interpreted as
the value of CL, at time t - tl, whereas n (tj) is the value

At
of s/At at time tI. All other enclosures indicate algebraic
expressions in the usual sense.
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A similar procedure is carried out for the angular velocity
variation, whereupon the total lift coefficient at the prescribed
time t becomes

d t d t
CL(t) := f C~ (T)c(t-')dT + 7- f CL(T) o (t- )dT (3)

t (T c q ~ -~d 3

It should be pointed out that in this form equation (3) is applicable
to the analysis of arbitrary motions, the only restriction being that
the flight speed is constant. In the following sections, however, the
application of equation (3) is restricted to harmonic motions having a
single degree of freedom. The reasons for this restriction are two-
fold: first, the motions of a statically stable aircraft in response to
a disturbance are most generally of a harmonic nature; and second, such
a restriction permits an assessment of the influence of the time rate
of the airfoil motions on the aerodynamic forces and moments.

Application of indicial functions to harmonic pitching oscillations.-
Consider first a pure sinusoidal pitching oscillation, the angle of
attack being zero throughout the motion. The flight path for such a
motion has been illustrated in sketch (b). In this case, the angle of
pitch is given by

e(t) = eoeiwt

where eo  is the maximum amplitude of oscillation and w is the
angular frequency. The angular velocity is, of course, q(t) = 6 =
iweoeiWt = iwO(t). Inserting the value for q(t) in equation (3) and

performing the indicated operations, there results

CL(t) = w2 e(t) ft CLq(T)e-iwTdT + Lo e 0 cq(t) (4)

CONFIDENTIAL
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Note in sketch (g) that CLq(T) is equal to CLq(t)-F 2 (r), and that for
subsonic speeds F2 (T) approaches zero as T approaches t,

C, ( r)
rtr

Sketch (g)

Replacing CLq(T) in equation (4) by this equality,

CLt iwCL (t) +- ft F2()e iWT d (5)

0 (t) 2V0O Cq 2V0 o

For subsonic speeds, let t approach infinity. With this sub-
stitution, equation (5) thereby represents the lift coefficient due to
the harmonic pitching motion after the transient loading subsequent to
the start of the motion has reached steady state. Then separating
equation (5) into components in-phase (real part) and out-of-phase
(imaginary part) with e, there is obtained

CLW2 Cf F2 (T) COE; WTdT
7 2Vo 0 (6)

CL = c() - w fa F2(T) sinwTdT

Introduce the nondimensional paraxeters,

2Vo
= -- T number of half M.A.C. lengths traveled in time Tc

k = reduced frequency
2Vo

CONFIDENTIAL
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In terms of these parameters, equation (6) becomes, for Mo< 1,

CL F(qp) cos kcqd( s.0 (7)
CL v= C (w) - k o F2(9)in

At supersonic speeds, equations (7) may be simplified somewhat
since the build-up in lift is completed in a finite number of half
M.A.C. lengths of travel aa" In equations (7), therefore, the upper
limits of the integrals may be replaced by aa, since beyond that point
F2 ()) is zero.

CL- k 2 Co F,(I) cos k(Pd(
a_ ( a (8)

Mo>l1

CL CLq(a) - k fja F2 (q) sin kq'dCqE/2Vo 0

Thus, it appears from equations (7) and (8) that there are both in-phase
and out-of-phase lift forces associated with the harmonic pitching oscil-
lation. Notice, however, in equations (8) that if the trigonometric
terms are expanded and the reduced frequency is required to be small
compared to unity (corresponding to the frequencies encountered in
dynamic stability work) terms containing second and higher powers of k
will be very small compared to first-order terms. Thus, for slow fre-
quencies, the only force of consequence during the pitching oscillation
is the first order in frequency out-of-phase lift force, q6/2Vo CLq(Ga).

2

2This quantity is, of course, the same lift force in phase with the
pitching velocity which would occur alone had the wing been executing
a steady turn (q constant). One of the chief advantages of the indi-
cial response method, at least for supersonic speeds, is the ease with
which the relative importance of the various terms contributing to the
total lift and moment can be assessed and the sources of the important
contributions identified.

CONFIDENTIAL
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The phase relationships for the har-
q monic pitching oscillation are indi-

f4 C too- cated in sketch (h). It is evident
2 e A from sketch (h) that the total lift

leads the angle of pitch by nearly 900.

(total) Application of indicial functions

to harmonic plunging oscillations.-
Next, consider a pure±y sinusoidal
variation of the angle of attack, the

-- angle of pitch being zero throughout
kla kodo c(f )Coeioothe motion. The flight path for this

-__ / ) aa k, P ~motion has been illustrated in
RV, 0o 4o sketch (c). Here, u equals aoeiwt P

where, as previously, ao and (W are
the maximum amplitude and angular fre-
quency, respectively. Applying equa-

Sketch (h) tion (3) again,

CL(t) = a o CL(T)eWt] dT

t iW

= iwca(t) f t CL,(T)e dWTd + %oCLM(t) (9)
0

Now, as in the previous example, let Cja(T) = CLm(t) - F(Qr) so that
equation (9) becomes

CL(t) = M(t)CLj(t) - iwaa(t) ft Fl(T)e iWT dT (10)
0

Again, introduce the nondimensional parameters (P and k, separate
equation (10) into its real and imaginary parts, and let go approach
infinity for subsonic speeds and Oa for supersonic speeds. There
results

= cL(X) - k f X F1(q) sin kpdq1

X = to, MO<I
X= Gap Mo >l (1)

CL
= " f F, (P) cos k d q

COFIE2VoTI
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Notice in equations (ii) for supersonic speeds that when the trigono-
metric terms are expanded for the slow frequency case, as was done in
the previous example, there appears an in-phase term of zero order
in k, a C%(ca), and an out-of-phase term of first order in k,

2Vo F1 ()dp. These, then, are the principal contributions to the

7V0 0
lift forces for the slow-frequency angle-of-attack variation. The phase
relationships for this motion are shown graphically in sketch (i). For
this case, it is evident that the total-lift force can lag behind the
angle of attack because of
the negative out-of-phabe
contribution, d

- ~f~aF1 (Cp) cos k~pdcp -wk/#Wsnktodo ~g
eVo 0

Application of indicial
functions to harmonic rotary
oscillations.- Finally, con-
sider the case of harmonic CL (ftol)
rotary oscillations. Here, - /okA0
as previously mentioned, the f "
normal velocity over the
wing surface is composed of I
contributions from both the
angular velocity and the Sketch (i)
instantaneous angle of
attack, so that the complete
expression in equation (3) must be employed to obtain the total lift.
However, for single-degree-of-freedom rotary oscillations, M equals e
and 6, equals q, so that in this case the separate expressions given
for the harmonically pitching wing (eqs. (7) and (8)) and the harmoni-
cally plunging wing (eq. (11)) can be combined to give the total lift
for a wing executing harmonic rotary oscillations. Then, adding the
results of equations (7)p (8), and (11), the in-phase and out-of-phase
components of the total lift become
CL

= CI (X) - k f F,(,)) sin k d) + k2f$X F2(q)) cos ktqdq (12a)
0 0

%=a, Mo< 1
%=0a, Mo> 1

CL = C)(.) - k X F2 (4) sin kq'd - fo F1.(q') cos i1iq (12b)

q8/2Vo

CONFIDENTIAL
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The phase relationships for the rotary oscillation may, of course, also
be obtained by directly adding the results given in sketches (h) and (i).
The result of this addition is shown in sketch (j).

q

ve, 0

qFC (,'etoI)
A

lw *

Sketch (j)

It will be noted in sketch (j) that the total-lift force can either lag
behind or lead the angle of attack, depending on the relative magnitudes
of the three terms comprising the out-of-phase lift. The total lift is
shown lagging behind the angle of attack in sketch (j), which situation,
for axis positions ahead of the point of concentration of the total lift,
gives rise to the possibility of the development of negatively damped
rotary oscillations.

Again, the complete frequency-dependent equations for the total
lift of a wing in supersonic flow due to the rotary oscillation
(eqs. (12), X = 0a) may be reduced to first order in k for the slow-
frequency case in the same manner as was described in the two previous
examples to give

CL= CL (Ga)

(13)
CL cLq(Ga) - aa F

CONFIDETIAL
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For all three examples, the same procedure may, of course, be used
to obtain the pitching-moment coefficient. Only the pitching-moment
equations for the rotary oscillation are presented below, since the
correspondence between the lift and moment equations is obvious. For
the rotary oscillation case, then,

Cm (%)  k f XF(') sin kPd( + k2 f F4(q) cos kff

X= 00 ) M O < 1 1( 4X=Ga, Mo> 1

CmX

7- Cmq(%)-k fF 4 (9) sin k~dP - f ((P) c os kd
fo-V 0 0o

where, as previously,

F3(P) = c%(X) - c%(q)

and

F4 (P) = Cmq(X) - Cnq(C)

Again, reducing equations (14) for supersonic speeds (X=ca) to first order
in frequency, there results

C c=
cma,(aa)

(15)
Cm qC/(o = a) /oa F3(() d}(q 2Vo

The complete frequency-dependent equations for the lift and pitching-
moment coefficients for the rotary-oscillation case (eqs. (12) and (14))
describe completely the aerodynamic forces and moments resulting from
the single-degree-of-freedom pitching mode. For the purposes of the
present discussion, however, it is sufficient to limit consideration to
the simpler first order in frequency results of equations (13) and (15).
The significance of the effect of the higher-order terms on the out-of-
phase pitching-moment will be examined in a later section of this report.

With regard to the first-order results for the supersonic lift and
pitching-moment coefficients, it is instructive to note that the

CONFIDENTIAL
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quantities FB ( F(w)dr and I F,()d @  in equations (13) and (15)

are represented geometrically by the areas of the shaded portions of
sketch (k).

4(5x Cow

ot

°(, (Iioo

Sketch (k)

The manner in which these areas are affected by variations in Mach
number, aspect ratio, plan-form shape, and thickness will be used as a
guide in later sections of this report to determine the significance of
these parameters.

In the foregoing discussion, no mention has been made of reducing
the complete equations for the lift and moment coefficients at subsonic
speed (eqs. (12) and (114), X=u) to first order in frequency as was done
for the equations noted as applying at supersonic speed. It is evident
that if the same procedure had been applied for subsonic speeds, the
area corresponding to the term f0 F1 (W)d can either be finite or can

become infinitely large, depending on the manner in which the indicial
lift function CL(q) approaches its steady-state asynptote as p- .
In the latter case, there exists the interesting anamoly of an infinite
out-of-phase lift force as the frequency approaches zero. As can be
seen from the results of reference 14, such will be the case for the two-
dimensional wing. This result as the frequency approaches zero is not
peculiar to the indicial analysis alone, but has been pointed out by a
number of authors using different approaches. As indicated by Miles
in reference 11, however, the anamolous result can be considered to be
a consequence of assuming a two-dimensional flow, and there is reason
to believe that the difficulty as the frequency approaches zero will not
exist for finite-span wings.

AT has been mentioned previously, the use of the characteristic

aure as pc ratoa pl~)~ an fr shpadtikea ilb sda

aue in eldstin hi F(p)d will be shown to be of considerable
vl ne the estimaing d uamping--in pitch characteristics of wings at

supersonic speeds. For the two-dimensional wing at subsonic speeds, the
singularity as k-eO prevents the use of such a simplified approach
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without further study. However, rather than return to the use of the
full frequency-dependent equations ((12) and (14)), the reduction of
the equations for the out-of-phase lift and moment to first order in
frequency will be made in such a manner as to preserve the significance
of these areas. To accomplish this end, equation (12b) is reconsidered.
It is evident that the first integral in equation (12b) may be discarded,
since its contribution to the out-of-phase lift is at least of second
order in frequency. The second integral is divided into two parts:

f 0 FCP)c s c~CP f 'P F 1(qc os k14dm + f 0*'P(C)cos kdP(6
o -o

where 91 is chosen such that Fl(%p) is close to zero. The first
integral in equation (16), being bounded, then causes no difficulty.
Expanding the trigonometric term and retaining only the first term in

the expansion, there results fol Fl(1)dp, which is t::e characteristic

area out to the point (i. Now for large values of (, F1 (C) is approx-
imated in reference 4 by

F,(CP) = 
1  b

a +---p-- Ta+q]T

where the values of p, a, and b are dependent on Mach number, and are
given for Mo = 0, 0.5, and 0.8 in reference 4. Inserting this quantity
in the second integral in equation (16), we have

Fl(()cos -= Gocos k d@ + f cos kC d (17)
okd =- i + (a+]2

Performing the indicated integrations in equation (17), there is obtained
a term, pb/a+q)1 , from the second integral, and a term, -pCi [a+(Pj]

from the first integral. For small values of the argument, the cosine
integral is approximated by (see ref. 12),

k[ a+{ka] --* 0

wnere y is Euler's constant, 1.78107.

Then, through the first order in frequency,

e = c u - f F1 (p) + G(r+ ,k) ( a)
qC/2Vo o
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where

G(cP13.k) =F~nfk~a+mlV.. p.b
L~C'Ya+J(a,

The out-of-phase moment for pitching about the leading edge follows from
the above development, with the added result of reference 4 that for
large values of CP,

F3() -F()

4

Then, through the first order,

Cm iiG(lk(1)
___V = Cmq(W) - f F3 (g)d( - G(%,k) (18b)

Thus, after fixing 91. choosing a (small) value of k, and computing

G(CP, ,k), the finite areas corresponding to the terms - f (P1 F1 (9)d
0

and - f Fs(P)dP can be assessed in the same manner as will be done

for the supersonic case. The advantages of such a procedure will be
evident later.

Correspondence between indicial lift and moment analysis and other
methods.- Before proceeding further with applications of the indicial
response method, it is appropriate to discuss the relationship of this
approach to other widely used methods.

Following the fundamental papers of Bryan and Routh, which intro-
duced the basic differential equations of motion of rigid bodies and
their stability criteria, the historical development of the theory of
longitudinal motions of an aircraft evolved separately in two fields of
research: dynamic stability and flutter. Workers in the dynamic stabil-
ity field soon found that the longitudinal oscillations of a rigid air-
craft in flight were generally of small reduced frequency. On this
basis, the constants due to the aerodynamic properties of the airframe
which appear in the differential equations of motion were considered to
be independent of frequency. As a first approach to the problem of
obtaining the necessary aerodynamic coefficients analytically, the
instantaneous normal velocity distribution at the surface of the airfoil
was assumed to be constant with time. The aerodynamic forces and moments
arising from the fixed boundary conditions were then calculated using
steady-flow theory. Later, this assumption was realized to be an over-
simplification for the case of wing-tail combinations and an additional
term correct to the first order in frequency was added which accounted
for the lag in the tail pitching moment caused by the time required for
the vorticity discharge from the wing to reach the tail (see ref. 13).
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Since at low speeds the pitching moment of the tail far outweighs all
other contributions, the results from steady-flow theory together with
the term accounting for the vorticity lag satisfactorily predicted the
dynamic longitudinal motions of wing-tail combinations, and it was con-
cluded that the major aerodynamic effects had been accounted for. In
recent years, however, numerous authors (in particular, Miles; see, e.g.,
ref. 11) have pointed out that the above-mentioned theory overlooks
important contributions to the aerodynamic forces and moments which,
though still within the first order in frequency approximation, arise
from time-dependent boundary conditions and must be calculated from
unsteady-flow theory. It has been shown by these authors that with
proper inclusion in the equations of motion of these coefficients, the
deterioration of damping in the short-period mode actually occurring for
aircraft flying at speeds near the speed of sound can be successfully
predicted. The consequences of the assumptions involved in the classical
dynamic stability theory will be more evident from a brief review of the
equation of motion and boundary conditions for the single-degree-of-
freedom rotary oscillations of a rigid wing flying at constant supersonic
speed. At the very outset, the assumption is generally made that the
aerodynamic reactions to the motion of the airframe depend only on the
angular position and angular velocity and not upon angular accelerations
or higher time derivatives. The equation of motion for the change in
pitching moment following a displacement from an equilibrium position is
then written in the form of a power series:

.I .= - FCmi C+ C ( C Cm & F_ +[2Cl( [L]_2 +
-~~~ [ 62C in- + - +A]

qoS L J [& /2V0 ]J 2V0  6 [q /2Vo]J 2Vo  L 2 LJ 2.

i2Cm [& /2V 0]2  ;3_C_ _ [ /Vol2

. + + . . . (19)

It should be remembered that for the rotary-oscillation case, the air-
foil is subjected to changes in both angle of attack a and angular
velocity q, and that these motions produce normal velocity patterns at
the airfoil surface which are different in character. Thus, although
for the single-degree-of-freedom case, & and q are equal, nevertheless
their separate effects must be considered ana it is therefore

Cm Cm
necessary to include both 6 [/2Vo and -/V in equation (19).

Next, if it is assumed that the moments are linearly dependent on their
respective variables, the higher-order terms in equation (19) may be dis-
carded and the remaining partial derivatives considered as constants for
the given wing. There remains, therefore, a linear second-order system
with constant coefficients. In order to calculate the coefficients
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(termed stability derivatives) theoretically it became necessary, for
lack of more refined theoretical methods, to assume that the instanta-
neous normal velocity of the flow at the surface of the wing was fixed

with respect to time. Thus, the partial derivative Cm could
S(qE/2Vo]

be calculated as the pitching moment due to a constant pitching rate,
that is, Cmq(Ga), while the derivative kCm/6cL becomes the pitching

moment due to a constant angle of attack, that is, Cmn(Ga). As a con-

sequence of fixing the normal velocity pattern in time, however, it was

necessary to assume that the derivative )Cm was zero. There6[6L/2Vo I

was therefore no possibility for this theory to predict the occurrence
of dynamic instability for a wing alone, since the only damping term
remaining is Cmq(aa), which is always stabilizing. When the restriction

of constant normal velocity with time is lifted, however, the assumptiun
is then made that the stability derivatives in equation (19) may be calcu-
lated separately by fixing each of the independent variables a, &,
and q in turn with respect to time. The derivatives Cmq(aa)

and Cm.(aa) thus remain unchanged, but the derivative 6cm (or cma)
aC(&E/2V0]

can now be included and calculated as the pitching moment due to a con-
stant vertical acceleration, &V0 . It should be emphasized that while
Cmq(aa) and Cm(Oa) may be calculated from steady-flow theory by virtue

of the assumed invariance with time of the normal velocity pattern, Cma
must be calculated from unsteady-flow theory since for constant &
the angle of attack varies linearly with time, as does the normal veloc-
ity of the flow at the surface.

It is clear that since the stability derivatives in equation (19) are
assumed to be independent of the frequency, the result for the aerody-
namic pitching-moment coefficient is thereby limited to one that is
correct only to the first order in frequency. For the single-degree-of-
freedom case, then, the in-phase and out-of-phase components of the
total aerodynamic pitching-moment coefficient correct to the first order
in frequency, become

Cm - C

(20)

Cm Cm(Ga) + Cm&(aa)q /2Vo q

By comparison with the first order in frequency result from the indicial
response analysis (eq. (15)), it is evident that the two results are
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identical if the quantity -.f a F3 ( )dg can be shown to be equivalent
0

to Cm&(aa). To show this equivalence, consider a wing, initially in
level steady flight, which is suddenly forced down with constant vertical
acceleration &Vo . As seen in sketch (1), the angle-of-attack variation
in this case is a = &t, where & is a constant. Then applying the

counterpart of equation (3) for the
pitching moment

Cm(t) = d ft C j 'r()a,(t-T)dT h

dt0
Inserting ct(t- ) = &[t-T], and per-

forming the indicated differentiation,

Cm(t) = ft Cm(p(T)dT
0

Now replace Cm,(T) by Cm,(t)-F3(T) * (0 1(1)

and let t be greater than ta.
Then Sketch (1)

Cm(t) = a(t)Cmc(ta) - fta F(T)dT
0

and nondimensionalizing, by replacing t and ta by ET/2Vo and 3ca/2Vo,
we have

Cm( ) = QL(P)Cm,(aa) - (21)

Thus, the pitching moment proportional to the constant vertical acceier-
ation parameter a/2Vo, which is synonomous with the definition of the
stability derivative Crn, is found to be equivalent to the pitching-

moment contribution due to & for the first order in frequency-rotary-
oscillation case.8 Therefore, the results of the indicial response
method, when reduced to the first order in frequency for supersonic
speeds, are identical to the results from the familiar first-order theory
used in dynamic stability work.4

3By the same procedure, the stability derivative CLa(aa) can be shown

to be equivalent to the term - fa Fl(q))dp.
4Notice in equation (21) that if Ca is replaced by infinity, the results

apply to subsonic speeds. For the two-dimensional wing, the analogyU

between Cm and -f F,(q)dp then gives only the previously mentioned

singularity at infinity as k--> 0. If the area corresponding to

fo F8 ()dq) were finite, however, the analogy would be equally useful

for subsonic as well as supersonic speeds.
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Workers in the field of flutter, who were concerned with frequencies
many times those encountered in dynamic stability analyses, required
theoretical information showing the behavior of the forces and moments
as affected by the frequency of oscillation, and therefore discarded the
first-order theory for more precise methods of analysis. One of the
most useful of these has been the "oscillating potential" theory, which
is based on periodic solutions of the time-dependent linearized equation
of compressible potential flow. The in-phase and out-of-phase lift and
moments are thereby determined, generally as functions of powers of the
reduced frequency, aspect ratio, Mach number, and position of the axis
of rotation. The application of this method, which developed primarily
as a result of Theodorsen's work for incompressible flow (ref. 14) has
recently produced a number of useful papers covering a wide variety of
wings at.-supersonic speeds (see, e.g., refs. 15 to 19). It has been
shown by a number of authors, in particular, Garrick, in reference 7,
that through the use of superposition methods the results for the aero-
dynamic coefficients obtained from the oscillating potential theory are
wholly compatible with those of the indicial response method for har-
monic motions (eqs. (12) and (14)).

Thus the indicial response method embraces both the first-order
theory of dynamic stability and the oscillating potential theory, and,
in effect, bridges the gap between the fields of dynamic stability and
flutter. Furthermore, the indicial response method overcomes the dis-
advantages of the two methods described above since, unlike the first-
order theory, the effects of frequency on the aerodynamic coefficients
can be determined, and, unlike the oscillating potential theory, the
method can be applied easily to the study of arbitrary motions. Finally,
the indicial response method represents a fundamental approach to the
problem of unsteady flow, and affords valuable insight into the physical
nature of the aerodynamic phenomena taking place.

Physical concepts relating to the indicial loading.- It has been
shown that for even small frequencies, the pitching moment of an airfoil
in harmonic rotary motion can lag behind the angle of attack of the air-
foil. The magnitude of the lag depends on the character of the indicial
response to a step change in angle of attack. It is therefore of
interest at this time to re-examine the physical nature of the flow
that contributes this lag.

Consider first the lift and moment at the instant the angle of
attack changes, assuming that previous to time zero the wing has been
flying a level path at zero angle of attack. At t = 0, the wing begins
to sink, without pitching, with constant downward velocity aVo while
maintaining its forward velocity. The angle of attack therefore changes
discontinuously from zero to a constant a. At the same instant, the
step change in angle of attack causes the emission of a compression wave
from each point on the lower surface of the wing and expansion waves
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from points on the upper surface. In the infinitesimal time during which
the starting action occurs, each section of the wing experiences the
same impulsive force, and by equating the impulse to the momentum trans-
mitted to the mass of fluid affected by the starting waves, the starting
lift coefficient can easily be derived as 4a/Mo (see ref. 3). During
the infinitesimal starting time, the pressure disturbances from the edges
of the airfoil, propagated at the speed of sound, travel an insignificant
distance and do not influence the remainder of the airfoil. The lift
coefficient is therefore independent of the wing plan form. This remark-
ably simple result for the starting lift coefficient, which is valid for
both subsonic and supersonic speeds, is thus dependent solely on the
flight Mach number. The starting pitching moment follows directly from
the above result, since by virtue of the uniformity of loading the aero-
dynamic center is located at the wing centroid of area.

For values of time greater than zero, however, the situation differs
radically for the supersonic and subsonic speed ranges. Consider first
the supersonic case. As time passes, the spherical sound waves emitted
at t = 0 grow in size with radius aot. The wing, however, is moving
forward at a faster rate than the rate of growth of the starting sound
waves and thus begins to emerge from the influence of these waves. This
is shown schematically in sketch (in). at It

starting sound waves
hw teed/ag edge

enrop e of oedf geea I a Art

stang Msves * u of

Sketch (M)

At t = 0, the starting waves just cover the wing and the loading is
uniform as described previously. At t = t1 , the starting waves have
grown in radius and the wing has begun to emerge from their influence.
On that portion of the wing which has emerged, region (1) in sketch (m),
the loading has already reached its steady-state value. Notice that in
this region the characteristic tip Mach cone has already formed. On the
portion of the wing uninfluenced by the starting waves from the edges,
region (3) in sketch (m), the loading is still uniform as at t = 0.
In regions (2) and (4). the loading is influenced by the starting waves

CONFIDENTIAL



24 CONFIDENTIAL NACA RM A52LO4a

from the leading and side edges, and in these regions is thus different
from the loading in either regions (1) or (3). As time increases still
further, the uniform starting load quickly disappears as the sound waves
from the leading edge grow in size and as the wing moves forward.
Finally, at time ta, the envelope of the starting waves from the lead-
ing edge is coincident with the trailing edge of the wing, and the
steady-state loading corresponding to the new angle of attack (L has
been completely established over the wing.

The above relationships can be shown more clearly for the entire
time interval zero to ta for a two-dimensional wing by plotting as a
function of time the position of the wing leading and trailing edges
and position of the envelopes of the sound waves which emanate from the
leading and trailing edges at t = 0. Such a plot is shown in sketch (n).

0 six

I/Veo of,

/ trace of sring
trove Of sound waves from

falling edge leading odge

Sketch (n)
It is clear that at t = tj the regions of the wing (1), (2),

and (3) correspond to the same regions at t = tj for the wing shown
in sketch (m). For t = 0 and in region (3) the loading is uniform and
is given by 4z/M0. For t >ta and in region (1) the wing has out-
stripped the starting waves from the leading edge and has attained its
steady-state loading. For t <ta the chordwise loading is composed of
combinations of the loading in each of the three regions as shown in
sketch (o).5

5 The reader will note the similarity between sketch (n) and sketches
depicting the boundary conditions for three-dimensional wings in
steady supersonic flow. Many researchers have pointed out the analogy
and it has been used to calculate the pressure over a wing impulsively
starting from rest (refs. 3 and ).
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Since the loading on the
wing attains its final
steady-state distribution
at precisely the time when
the wing has emerged entirely
from the influence of the
starting sound waves from
the leading edge (or apex),
the time to reach steady
state may be easily calculated
for any type of wing by means to
of the geometric relationships
shown in sketch (p).

/t

Sketch (o)

t~~t. € to

of aerting Sound wVW

4"x

Sketch (p)
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It may be easily verified that ta, the time required for the wing to
attain its steady-state loading, is given by the following relationship:

tacomo < (22)
V0 (M0 -csc v] 2

Notice that for wings having straight or swept-forward trailing edges
and straight or swept-back leading edges, equation (22) reduces to

ta = coMo (23)
Vo[Mo-I]

In terms of the number of half M.A.C. lengths of travel, it thus appears
that for wings having straight or swept-forward trailing edges and
straight or swept-back leading edges,

aa=2VO ta = 2c O  Mo
ca %-- T (o (24)c IM[ O-1)

whereas for wings having swept-back trailing edges and straight or
swept-back leading edges,

2co , M2co
= O [Mo + MMcscV+ cos V

c 4c b

(N02 } 1 0 ccv~ CSV(

The second of equations (25) applies to that range of Mach numbers for
which the trace of the starting sound wave from the apex is not tangent
to the trailing edge at t = ta.

Now consider the subsonic case. Here the situation is more compli-
cated in that since the starting sound waves travel faster than the
wing, the wing never escapes their influence. Furthermore, the vortic-
ity shed by the wing at t = 0 can also influence the loading on the
wing since the disturbances created by the shed vorticity travel forward
at a faster rate than the wing. For these reasons, the indicial loading
at subsonic speeds approaches its steady-state distribution asymptoti-
cally with time. The situation for subsonic speeds will be more clearly
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evident from examination of sketch (q), which shows the relationship of
the traces versus time of the leading and trailing edges of a two-
dimensional wing flying at a subsonic Mach number to the traces of the
envelopes of the starting sound waves.

shed vorticity
J. rrc of M .<

srfif #uand waves
,e freI/allg edge

starling sco waves

trceof
/erdin edge

til/ag edge

Sketch (q)
Notice in sketch (q) that the starting
sound waves intersect the edges of the -ing J
and that each intersection causes a new
sound wave to be emitted, which in turn will
intersect an edge. Furthermore, notice that
the vorticity shed from the trailing edge 0
at time zero can influence that portion of
the wing behind the sound wave trace
labeled a-b. The influence of each succes-
sive sound wave reflection, however, is
weaker than the last, and as the wing moves
away from the starting vortices their
influence diminishes, so that at t = a the
loading on the wing attains its steady-state
distribution. The variation of the chord-
wise loading with time for the two-
dimensional wing flying at a subsonic Mach
number is shown in sketch (r). Notice that N
for t >0, the chordwise loading is markedly
different from the loading at supersonic
speeds (sketch (o)). However, for t = 0

Sketch (r)
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and in the region corresponding to region (3) of sketch (q), the loading
is uniform and equal to 4a/Mo, as in the supersonic case.

Damping in Pitch of Low-Aspect-Ratio Wings

Previously (eq. (20)), it was shown that for single-degree-of-
freedom, slow-frequency, pitching oscillations of a wing, the principal
parameter contributing to the damping of the motion is the damping coef-
ficient Cmq + Cm&. This result, however, is not directly applicable to
the case of an aircraft in flight, since generally additional damping is
provided by virtue of the fact that the aircraft experiences harmonic
vertical translatory oscillations as well as the rotary oscillations.
For the slow-frequency case, however, the effect of the second degree of
freedom on the damping can be determined by use of the relationships
given in reference 10. It is further shown in reference 10 that although
the effect of the translatory oscillation is usually to increase the
total damping, nevertheless, the parameter of primary importance in
determining the magnitude and duration of the motion remains the damping-
in-pitch coefficient Cm + C. The remainder of this section is
therefore concerned with a study of the effect on this parameter of
certain important variables. In particular, the effect of the position
of the center of gravity, and the effects of Mach number, aspect ratio,
plan-form shape, frequency, and thickness will be examined, principally
by inspection of the indicial lift and moment responses to a change in
angle of attack.

Effect of static margin.- From the previous discussion, it will be
remembered that at supersonic speeds the stability derivatives Ci&(Ga)
and Cm&(aa) were shown to be equivalent to the indicial lift and moment

expressions, - f a F1 (p)d and - f a F3 ( )dc. Furthermore, it was shown
0 0

that these were the contributions which could cause the total lift and
moment during the short-period oscillation to lag behind the angle of
attack. Hence, by inspection of equation (15), it is evident that since
Cmq(Ga) is always stabilizing, when Cm(ca)is negative (corresponding
to a statically stable condition) the possibility of dynamic instability
in the form of negatively damped rotary oscillations arises when
Cm&(Ca) , the shaded area in sketch (k-ii), is larger than Cma(aa).
Now since the normal velocity at the surface of the wing due -co the
instantaneous angle of attack is constant over the wing, the lift
derivative CL& which arises from this boundary condition is independ-
ent of the axis position and Cma will therefore vary linearly with
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axis position. This variation is illustrated in sketch (s), where Axo
represents the distance of the center of gravity from the aerodynamic
center, measured positive forward of the aerodynamic center.

Cm.

stable
I 

CI/

unsableb

Sketch (s)

The parameter CLqo on the other hand, is a direct function of the
axis position, since it arises from a normal velocity distribution that
varies directly as the distance from the axis. The moment coeffi-
cient C will therefore vary as the second power of the axis posi-
tion, and describes the parabolic shape shown also in sketch (s). It
is evident from sketch (s) that the sum of Cm. and Cma will be a
minimum at some value of the static margin, an that the sign
of Cmq + Cm& at that point determines whether or not a region of axis
positions will exist over which the wing can experience negatively
damped rotary oscillations. These qualitative statements may be written
explicitly by considering the equation for the damping in pitch about an
arbitrary axis,

Cmq + Cm& = [mq] + [m[-CLq ° +CL } -

2 i2  CLm (26)

where again Axo refers to the distance of the center of gravity fro"
the aerodynamic center, and the subscripted terms are referred to an
axis through the aerodynamic center.
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Taking the derivative of equation (26) with respect to bxo/, and
setting the result equal to zero, there is obtained the axis location
at which the damping in pitch is a minimum

d[Cm+Cl&] [Lq c
do xo/[ 0 (27)

AX0 -, +CL+U f'o ]o + c
4cL.

When equation (27) is inserted into equation (26), the minimum value of
the damping in pitch is given as

[Cmq+Cm&] = { [Cmq]o+[cmo& }4 8 {[CLqjo + CL&1 (28)

and hence, a region of instability will exist if

~[Cmqj+ CM& 10 1 8C C Lq 16+ C 1}> 0 (29)
o o 8Cb ~

If equation (29) is greater than zero, the boundaries of the region of
axis positions over which instability is possible are of course given by
setting equation (26) equal to zero Lnd solving for Axo/E.[. .o C 12 cc +(m
Ax0 _ {(CLq]0+C~} { ( ]0+L 2 La} +(30)

c 4c~mL, -L

Notice in both sketch (s) and equation (30) that for a given Mach number
there will be two axis positions at which the damping in pitch vanishes.
Then if the above procedure is carried out for a series of Mach numbers,
one may trace out a curve as shown in sketch (t) which forms the locus
of Mach numbers and axis positions at which the damping in pitch is zero.
This locus thus delineates the regions of Mach number and axis position
for which dynamic instability is and is not theoretically possible.
Such loci, covering a wide variety of wings at supersonic speeds, have
been presented by a number of authors. Watkins, for example, presents
supersonic boundary curves for rectangular and triangular wings in refer-
ences 16 and 17. At subsonic speeds, Miles' reduction of Possio's
development to first order in frequency (ref. 11) can be used to form a
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stability boundary curve for the two-
dimensional wing for a given (small)
reduced frequency. Such a curve is pre-
sented for the entire Mach number range d4
in figure 1, where, here + xo  is the J
distance of the axis of rotation behind
the leading edge and k, the reduced fre-
quency, is 0.011 for subsonic speeds and sta
approaches zero for supersonic speeds.
Notice in figure 1 that at both subsonic unslohie
and supersonic speeds, the range of Mach
numbers over which dynamic instability is o
possible is largest for center-of-gravity
positions forward of the aerodynamic
center. Further, the largest range of
axis positions over which dynamic insta-
bility is possible occurs near Mo = 1.Sketch (t)
Both of these characteristics are true as well for three-dimensional
wings at supersonic speeds (see, e.g., refs. 16 to 19).

Effect of Mach number.- Next consider the effect of Mach number on
the damping in pitch of a two-dimensional wing with axis at the leading
edge. The variation with Mach number of the indicial pitching-moment
response to a change in m will first be examined, using the information
given in the previous sections and the indicial curves given in refer-

ence 4. At supersonic speeds, the manner in which - f aF Cp)dW, the

area corresponding to Cm , is affected can then be assessed and com-
pared with Cm (aa). At subsonic speeds, use is made of equation (18b).
It is evident ?n equation (18b) that by fixing k and choosing q ,

such that the quantity 1 G(cp ,k) is the same at each Mach number, one

is free to compare finite areas - f F3 (p)dCP on an equivalent basis.

As has been mentioned previously, the starting lift, at any Mach
number, is 4a,/M O and is concentrated at the midchord. At Mo = 0,
therefore, there is an initial infinite pulse in the pitching moment
about an axis coincident with the leading edge after which the indicial
curve drops to v/4 and begins to grow asympotically toward its steady-
state value v/2. At low subsonic Mach numbers other than zero, the
initial pitching moment is less than infinite but very large, being
2/Mo, and then falls before growing toward the steady value /20. As
the Mach number increases toward 1.0, the starting pitching moment
falls while the asymptotic value grows, until at Mo = 1.0 the indicial
curve becomes unbounded in asymptotic moment.
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As seen in sketch (u), the effect of increasing the Mach number at
subsonic speeds is therefore to increase rapidly the area corresponding
to the destabilizing moment contribution, - fo (P)d(.

M. 0

4

CM to), Me.0

i I
0 .so ... 00

to 30 40 50

Sketch (u)
In sketch (u), k was chosen to be 0.011 and the values of 91 were
picked such that - . G(q'1,k) was +4.88 at each Mach number. In the

following discussion, the damping moment - f 1 F3(W)d + 4.88 will be
referred to as Cm& for convenience. 0

At supersonic speeds, the initial value of the pitching moment 2/Mo
continues to drop with increasing Mach number, but here the steady-state
pitching moment also begins to fall and at a faster rate than the start-
ing moment, being 2/3. Even more important, as the Mach number increases,
the number of half-chord lengths traveled to reach steady state decreases
rapidly, being 22, for example, at Mo = 1.1, as compared to 4 at Mo = 2.
As seen in sketch (v), the area representing Cm& therefore shrinks
rapidly with increasing supersonic Mach number and becomes relatively
unimportant at Mach numbers greater than 2. The trend of Cm& with
Mach number through the range 0<Mo< 2 is more clearly evident in
sketch (w). It is seen that Crn is positive, or destabilizing,
throughout the Mach number range and that its effect is most important
at Mach numbers near 1.0. Also shown plotted for comparison in sketch (W)
is the variation of Cmq with Mach number. When the parameters are
added, it is evident that the damping moment Cmq + C for the two-
dimensional wing with axis at the leading edge is destabilizing in the
Mach number range 0<Mo< 1.414.
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Sketch (v)

Effect of aspect

ratio.- To illustrate the
effect of aspect ratio, _1

it is convenient to q

compare the supersonic

damping-in-pitch char-

acteristics of a group of 0,~,-.
triangular wings having /
subsonic leading edges.

The wings are of equal /O

area and differ only in

aspect ratio. As was +,Dm # C

done previously, the q|i

indicial lift responses r Cjg/*'.WIJ' '

to a change in 
angle of

attack will first be
examined. The effect of

aspect ratio 
on the char-

acteristic area repre-

senting CL can then be Sketch (w)

assessed.

As has been mentioned previously, the starting lift coefficient

after a step change in m is independent of aspect ratio and is there-

fore equal to 4o/Mo for each wing. The parameter aa, the number of

half M.A.C. lengths required to reach steady state, is also the same for

each wing, being a function only of Mach number. The steady-state lift

coefficient, on the other hand, is a function of aspect ratio and
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decreases as the aspect ratio is reduced. Thus, as shown schematically
in sketch (x), as the aspect ratio becomes smaller, the characteristic

eta

Sketch (x)

area representing CL& decreases rapidly.6 For the wing of smallest
aspect ratio, CLa may be positive since the area below the steady-
state lift coefficient is more than compensated for by the area above.
It is evident, therefore, that a reduction in aspect ratio has a highly
stabilizing effect on the damping in pitch, since for positive values
of the static margin the development of a destabilizing damping moment
is possible only when CL,. is negative. This result is shown in
sketch (y) where, for an axis of rotation located at 0.25 F and Mo=l.2,
the damping parameters are presented as functions of aspect ratio.
Since for triangular wings the lift due to & is concentrated at

is equal to - CL. The variation of Cm& with aspect ratio

shown in sketch (y) then follows directly from the trend of CL& shown
in sketch (x). Also plotted in sketch (y) is the variation of Cmq

6Theoretical indicial curves have not yet been calculated for the
triangular wing with subsonic leading edges. The curves drawn in
sketch (x) are estimates of the true shapes, and are intended only
to indicate the trend of the characteristic area with aspect ratio.
The exact variation of C with aspect ratio can be computed from
the results of reference20.
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Sketch (y)

with aspect ratio (ref. 20). It is apparent that although Cm, becomes
more stabilizing with increasing aspect ratio, the destabilizing effect
of C& predominates, and the trend of the net damping moment is seen
to become highly destabilizing as the aspect ratio is increased.

By the same reasoning, the variation with aspect ratio of the
damping moments of other types of wings can be shown to be similar (see,
e.g., refs. 11, 21, 22, and 23). A notable exception, however, is the
triangular wing with supersonic leading edges, whose damping in pitch
has been shown to be independent of aspect ratio (see refs. 18 and 19).
This characteristic may be anticipated from a study of the indicial
response curves, since not only are the initial pitching moment CM'(o)
and the half M.A.C. lengths traveled to reach steady state (0a) inde-
pendent of aspect ratio, but, unlike the subsonic-edged triangular wing,
the steady-state p .tch ng moment C%(Oa) is also independent of aspect

ratio, being 4 - |" Inspection of the results of reference 4 then

reveals that the indicial variation C,(C) between zero and Oa and
the steady-state parameter Cm (Ca) are likewise independent of aspect
ratio.

Effect of plan-form shape.- Next, consider the effect of plan-form
shape on the supersonic damping in pitch of a group of wings having the
same aspect ratio. In order to make use of readily available theoretical
results and yet compare these results with the experimental data to be
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given later, three wings of aspect ratio 3 are chosen, having the trian-
gular, swept, and rectangular plan forms shown in sketch (z).

~C,

-zI

4:3 4:3 A "3
A. 53." J •45*

Sketch (z)

As has been shown in the section entitled "Effect of static margin,"
the tendencies of the wings toward dynamic instability can be compared
comprehensively by plotting their stability boundaries. For this com-
parison, then, use is made of equation (30). The stability derivatives
which appear in equation (30) were computed from the theoretical results
of references 11, 20, 22, and 23. Results of these calculations are
shown in figure 2, wherein the stability boundaries for the three wings
are shown as a function of axis position and Mach number. (Note that
the axis position for each wing is measured as the distance from the
leading edge of the M.A.C. of the wing, and that the dimensions are non-
dimensionalized on an equivalent basis by referring them to the M.A.C.
of the triangular wing.) It is clear from inspection of figure 2 that
at any Mach number the triangular wing has the smallest range of axis
positions over which dynamic instability is possible and the rectangular
wing, the largest.

The differences in the damping characteristics of the triangular
and rectangular wings will be more clearly understood by a qualitative
study of their indicial lift responses for a Mach number of 1.2, and an
examination of the distribution of loading due to & for the two wings.
Consider first the indicial lift responses.

Again, the starting lift coefficient is independent of plan-form
shape and is 4m/Mo for each wing. For the rectangular wing, the
lift drops abruptly after time zero due to the loss in lift in the
regions of the wing influenced by the formation of the tip Mach cones
and the starting waves from the side edges (see sketch (m)). Then as
the wing begins to emerge from the influence of the starting waves, the
lift begins to recover, rises toward its steady-state value (given
by eq. 6.3-2 of ref. 11), and attains this value after 12 half-chord
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lengths of travel (eq. (24)). The variation is shown in reference 4 and
is redrawn in sketch (aa). As mentioned previously, theoretical indicial

A&

etc / l 0

1 
O 5 10

ilk* I r|

Sketch (aa)
lift results have not yet been developed for triangular wings having
subsonic leading edges. However, the variation shown in sketch (aa) is
considered to be a reasonable estimate of the true shape, being based on
knowledge of the steady-state lift (ref. 20), the time to reach steady
state (eq. (24)), and the assumption that the shape of the variation
would be similar to that of the wide triangular wing (ref. 4). The
curve was adjusted within the known end points until the area correspond-
ing to CI& agreed with that given for this parameter in reference 20.
It is evident from examination of sketch (aa) that because of the initial
loss in lift and the larger steady-state lift for the rectangular wing,

CL. for this wing is significantly more negative than that for the tri-
angular wing. Next, it is shown in references 11 and 21 that with the
exception of regions influenced by tip Mach cones, the loading due to a
(for 9 > a) for wings having swept-back leading edges increases linearly
from zero along rays from the apex; whereas for rectangular wings the
loading due to & increases linearly from zero along chord lines. These

characteristics place the center of loading due to & at 3 c0  for the
27

triangular wing and approximately ? co  for the rectangular wing.7

Then for an axis of rotation passing through the aerodynamic centers of
the wings# the moment arm for the lift due to & for the triangular

7Due to the influence of the tip Mach conesp the center of loading due
to & is shifted forward somewhat from the position it has for the
two-dimensional wing. Calculations for the A = 3 rectangular wing
at Mo = 1.2 show that the center of loading is at 0.605 co o
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wing is co or c; whereas for the rectangular wing it is approxi-

mately i C0 .
8 Thus, not only is the negative out-of-phase lift contri-

bution CLi for the rectangular wing significantly larger than that for
the triangular wing, but the destabilizing damping moment - CLci is

larger yet, due to the larger moment arm. Calculations for the steady
pitching parameter Cmq for an axis through the aerodynamic center
(refs. 11 and 20) then reveal that Cmq for the triangular wing is more
negative than for the rectangular wing. The net result is therefore a
considerably larger damping moment for the triangular wing than for the
rectangular wing. The result of this comparison, however, should not be
interpreted as a recommendation that the triangular rather than the rec-
tangular wing be used on aircraft from a dynamic stability standpoint.
To obtain adequate static stability, the rectangular wing would generally
be employed in combination with a tail surface, whereas the triangular
plan form may be sufficiently airworthy without the use of a tail. The
addition of a tail surface in effect reduces the aspect ratio of the
rectangular wing, which reduction, as noted previously, has a highly
stabilizing effect on the damping in pitch. The tailless triangular wing
may therefore experience more difficulty at Mach numbers near 1.0 than a
rectangular wing-tail combination.

Effect of frequency.- The previous discussion has been restricted
to the analysis of a harmonic motion that is of vanishingly small fre-
quency. This limitation arose as a consequence of discarding all but
first order in frequency terms in the expansions of equations (12)
and (14). The question arises: when the frequency can no longer be con-
sidered small, what effect has the frequency on the damping in pitch?

Previously, the trigonometric terms in equation (14) were expanded
and, assuming k to be very small, terms of order k2 and higher were
eliminated. It was then found that the loss in damping from that pro-
vided by the steady damping parameter Cmq(aa) was associated with the
destabilizing moment contribution corresponding to the term
- f a F3 (CP)dP. Now, however, we discard the restriction of small k

and perform graphically the integrations evident in equation (14) for
supersonic speeds for several values of k. The procedure is indicated
in sketch (bb). It is apparent from sketch (bb) that the effect of
increasing k is to reduce the area corresponding to the destabilizing

moment contribution - f F(q) cos kqxiq@. There appears another
0

eAgain, due to the influence of tip Mach cones, the aerodynamic center is
1

shifted forward from 7 co to 0.443 co. The moment arm is therefore

0.163 co.
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Sketch (bb)

destabilizing contribution, -k aa F4 ((P) sin kd , but quite evidently
its effect is small compared to the reduction in the term

- Oaa F (P) cos kqpdp. Notice further in sketch (bb) that the effect of
increasing k becomes of marked importance when the half-period of
oscillation is the same order of magnitude as the time for the indicial
response to reach steady state. As shown in sketch (bb) for the fre-
quency k2, the area b then begins to subtract from a soqueny k2 th are sothat the

destabilizing contribution faF( ) cos kcd can be very small. We
may therefore expect that increasing the frequency of oscillation has a
stabilizing effect on the damping in pitch. This conjecture is sub-
stantiated in figures 3 and 4, where the supersonic stability boundary
curves for aspect ratio 4 triangular and rectangular wings are shown
plotted for various reduced frequencies. These curves were obtained
from calculations based on the results of references 16 and 17. Notice
that for both wings the region of possible instability is diminished as
the frequency is increased.

From the results of the analysis for supersonic speeds, we may

further expect that the stabilizing effect of increasing the frequency
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will be of even more importance at subsonic speeds, for here the indicial
variation F3(') dies out at infinity. The half-period of oscillation
is therefore always smaller than the time to reach steady state.a@

The situation for the term - fo F8 ( ) cos kq'dc' is shown in sketch (cc).

k --0

0 //
o,~ ... ...... .-- .., '.-

-Jwk/

Sketch (cc)

It is evident in sketch (cc) that the destabilizing moment
- f Fs(() cos kq'dP diminishes rapidly as the frequency is increased.

The effect of this reduction on the damping in pitch can be illustrated
by plotting the subsonic damping-moment coefficient against reduced
frequency for the two-dimensional wing (with axis at the leading edge)
for Mach numbers 0, 0.5, and 0.8. The results, which were obtained
from reference 4., are shown in figure 5. It is seen in figure 5 that
the large destabilizing effects of the moment contributions

aso
- f F3(CP) cos kqd' and -k .' F, (CP) sin kPd(P are confined to a rela-
tively narrow range of reduced frequencies. Notice further in figure 5
that the range of frequencies for which instability is possible is small
at Mo = 0 (Ok<O.0o4) and grows with increasing Mach number. This is
believed to be the primary reason why unsteady lift effects were found
to be unimportant at low speeds but are of great importance at speeds
near the sonic speed.
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Effect of thickness.- In this section, the concepts regarding the
indicial functions discussed in previous paragraphs will be used to
examine the effect of profile thickness on the damping in pitch of a
two-dimensional wing flying at a supersonic Mach number.

It will be recalled that for low frequencies the damping in pitch
may be considered to be the sum of the damping moment due to steady
pitching, Cmq(ca), and the area representing Cm& on the plot of the
pitching-moment response to a step change in angle of attack
(sketch (k-il)). The airfoil thickness, of course, influences both
these parameters. For the purpose of this analysis, it will be con-
sidered sufficiently accurate to study the effects of thickness only on
the steady parameter Cmq(ca) and on the end values C%(O), Cmx(aa)
and Ca of the indicial response curve. It will then be assumed that
shape of the indicial response curve is not appreciably altered by thick-
ness effects, whereupon the major effect of thickness on C= can be
assessed by adjusting the response curve given by the linearized theory
to fit the corrected values of Cmm(O), Cm(Ca) and ca*

It has been shown by Busemann (see, e.g., ref. 24) that the loading
at an element of a lifting airfoil may be represented by

P C1[auZ-+2m] + C2{Ou-'Z +2cL [au+ojo(31)

where
2

C1 =

C 7~+l]MoL, - 4[MO2l]

and au and at are the local slopes of the upper and lower surfaces,
respectively, measured with respect to the chord line. For the special
case of an airfoil that is symmetrical about the chord line,

ou equals a, and equation (31) reduces to the following:

a = 2X 1 + 4C, (32)

For the sake of simplicity, in what follows equation (32) will be used
for the local loading rather than equation (31). The results will there-
fore be valid only for airfoils that are symmetrical about the chord line.
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The lift on the airfoil due to angle of attack is obtained simply by
integration of equation (32) across the chord.

i oApdxCL~a) - qo
CL0) L() f coo°O d

CL,(Ga) = ( = 2C + caux (33)

Similarly, the moment due to angle of attack, measured about the leading
edge, is

Cm'(0a) = o a x dx

CmM'(aa) Cm'(aa) = - cS 0 co (34)

When both the leading and trailing edges are on the chord line, equa-

tions (33) and (34) reduce to the following:

CLm(Oa) = 2C(

(35)
2C 2

Cma,'(Ga) = - C1 + c2fC}

where 0 is the enclosed area of the airfoil section.

The local loading given by equation (32) is still applicable for
the steady pitching case with this added provision: that now a repre-
sents the local angle of attack. For an airfoil pitching about its
leading edge, the variation of m with chordwise distance is given
by a = qx/Vo, where q is the pitching velocity. Then again, for the
lift due to pitching,

CL'(Oa) fco A dx

.CL'(oa) -2C 8C2 f~ CO au (36)
cJ' a - qc0 /2V0  c C 2  0
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Likewise, the pitching moment due to pitching about the leading edge is

Cm'(Oa) =-, fco xdx

Cmq'(0a) = Cm' (aa) =-4 C .---- ouX~ (37)

The primes on the parameters indicate that the moments are measured about
and the wing is pitching about the leading edge.

In order to illustrate the result given by equation (37), the
damping moment due to steady pitching has been computed for a family of

airfoils having symmetrical biconvex parabolic arc sections. The
results are presented in figure 6. The dashed line in figure 6 repre-
sents the theoretical locus of Mach number and leading-edge angle for
bow-wave detachment (ref. 24). Since the requirements of the second-
order theory are violated to the left of this line, the damping curves
there are not rigorously correct, and therefore are terminated a short
distance beyond the line.

To determine the effect of thickness on the parameter, Cm,&', it is
assumed that the shape of the indicial pitching-moment variation is not
significantly affected by thickness. When this assumption is made, it
becomes necessary only to correct the initial and final ordinates of the
indicial curve Cmm '(o) and Cmc'(0a) and the number of half-chord lengths
traveled to reach steady state, aa. The response curve is adjusted to
fit these new end values, so that the area representing the cor-
rected Cm&' can then be determined.

The effect of thickness on the final ordinate of the indicial curve,
CmM'(Ga), has already been determined (eq. (34)). Now consider the
starting lift and moment.

Assume first a thin flat wing to be flying at zero angle of attack
in a uniform stream of density po. At time zero, it starts to sink
with downward velocity Vom. The impulsive start causes a plane com-
pression wave to be emitted from the lower surface at the speed of sound,
which is constant throughout the stream. (The pressure and therefore
the temperature is sensibly constant.) At the same instant, a plane
expansion wave is emitted from the upper surface and travels at the same
velocity in the opposite direction. At the end of an infinitesimal time
period At, the wing has sunk a distance VomAt. The sound waves have
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moved a distance aoAt in both directions. The mass of fluid affected
is 2pocoaoAt. Then, from Newton's second law, one may write.

(fu-fz) At = 2p0ocoaoAt Vom

where fu and f1  are the forces per unit span on the upper and lower
surfaces, respectively. Converting to coefficient form, it then appears
that

CL(O) f_-f 4
C ooVo2co- Mo

For the wing of finite thickness for which the pressure varies along the
chord, a different result is expected. The wing is assumed to have been
flying at zero angle of attack for a period of time long enough for the
flow to have established itself around the surface. In this case, the
density, temperature, and therefore the speed of sound, vary along the

chord due to the curvature of the surface. At time zero the wing again
starts to sink, but the compression and expansion waves are propagated
at different rates at various chordwise positions so that

At (fu-fI](x) = 2 -L (x) -L (x) Pcpot Voc

P0o ao

and the starting lift becomes

CL(o)4f co ax (38)
a"Too P0 a o

From reference 24, the variation of p/p0o a/ao with Cp is found to be

p0 a0 =i+ Cpo ao -2 (39

where Cp is the pressure coefficient at a point on the surface when

the airfoil is at zero angle of attack. Again, from reference 24,

Cp = po = ClU + C2Cu2  (40)qo

where p and po are, respectively, the pressure at a point on the sur-
face of the airfoil and the free-stream static pressure.
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For the symmetrical biconvex parabolic arc airfoil considered
earlier, the local slope au is given by

a= 25 1- L ] (41)

where 8 is the thickness ratio.

Then expanding equation (39) in a binomial series, retaining terms
through the second order in Ou, and performing the integration indicated
by equation (38), there results for the starting lift coefficient

CL (o) = L 4i+0.04Mo 2b2[20C2 -Mo 2C2] } (42)

A similar procedure can be carried out for the starting pitching-moment
coefficient, measured about the leading edge

t - 4 f o L a x
C '(0) = aMal14 Mco 0 Po so

CMQj1'(0) 2 - .&{+O.04M 2 (20C2 6 2_M0 2C1 2 52 .10C 1 } (43)

Mo~o cUoxd

It is necessary also to consider the effect of thickness on the time
required for the loading on the airfoil subjected to a step change in
angle of attack to reach steady state. As was seen in sketches (n)
and (p), the time to reach steady state is exactly equivalent to the
time required for the wing to escape the influence of the sound waves
emitted from the leading edge at the start of the motion. For purposes
of analysis, the situation is reversed by requiring that the wing remain
stationary in a fluid moving with supersonic velocity Vo, and causing
a sound wave to. be emitted at the leading edge of the wing. To an
observer standing on the upper surface of the airfoil, there will appear
to be two wave fronts whose velocities tangent to the surface are
[V+a] and [V-a], where V and a are the local stream velocity and local

speed of sound, respectively. Then the time required for the slower
wave front to clear the airfoil is given by

ta = t dt = 1 c = J, (44)
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It is therefore necessary to obtain V/aO and a/aO  as functions of
chordwise location x. Again, in reference 24 these quantities are
found to be functions of the local pressure coefficient Cp.

7-12 cp
ao  2

(45)

V+ _ao  Y-i s

Expanding equations (45) through the second power of Cp and

through the second power of au, there is obtained

ta= ,2 (46)

VO(Mo-l] 1o IICP+g-CPa

where

K O.50M0 + O.OM0
2

Mo-I1

O.125M4[!!g 2 -l] + O.o 0IC2 =M 0Mo-

The pressure coefficient CP is now assumed to be that existing at
a point on the surface when the airfoil is at zero angle of attack. This
assumption, of course, introduces some error since the angle of attack
has changed discontinuously from zero to m at t = 0. However, if we
require that a be less than 82, then the error introduced through
neglect of the effect of the change in a on the pressure coefficient
is negligible. Then, as in the starting lift problem,

Cp = Clau + C2au2  (47)

Inserting equation (47) into equation (46), dividing numerator by denom-
inator, and again retaining terms through the second power in aup there
results

= M0 - Co [l+CI u+ [K1C 2+ 212 2 C] (48)ta = Vo[Mo.I] I .lo u +Oe dx (48C2)21

0
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For the symmetrical biconvex parabolic arc airfoil, au is replaced by
equation (41), whereupon for this airfoil the time to reach steady
state becomes

ta = coM° [1+1] (49)Vo [mo-i]

where

482 K 1 C2 +[K, 1 -K 2 JC12+13 1 2f

Alternatively, in terms of the number of half-chord lengths of travel,

cla = 2V ta = - l+g] (50)Co MO-I

The effect of thickness on the damping parameter Cm@' can now be
estimated approximately by adjusting the indicial pitching-moment curve
obtained from the linearized theory to the end values given by equa-
tions (34), (43), and (50), and then measuring the area corresponding to
the "corrected" Cm&. The process is indicated in sketch (dd) below,
and the adjustment formulas are given by equations (51).

Ire

.____ ___ _ __,

Sketch (dd)
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C () = c o'(CP) - AC'(o) 92. [CMa'(oa) - Acm'(o)

aao

where

ACM'(o) = Cmo'(O) - Cm'(o)

AcC' (7a) = Cm o ' (0ao) - Cmc I '(aal)

and the subscripts o and i indicate values corresponding to the linear-
ized theory and the adjusted theory, respectively. Notice also in
sketch (dd) that the area corresponding to the adjusted value of Cma'
is given by the following expression:

= CMo' + - al ACma.'(Oa) (52)

The parameter Cm&' for pitching about the leading edge has been
computed, using equations (35) to (52) for the same family of airfoils
as that discussed previously and the results added to those obtained
for Cmq' (eq. (37)). The total damping moment C ' + C is shown

plotted as a function of Mach number in figure 7. Mit is evident from
examination of figure 7 that the effects of thickness are small and are
in the destabilizing direction with increasing thickness ratio. It
should be noted that this result does not agree with those of Jones and
of Wylly in references 25 and 26 which indicate that the effect of thick-
ness is extremely stabilizing. In reference 27, however, Van Dyke takes
issue with the results of references 25 and 26, and offers an alternate
solution correct to the second order in thickness. From this result,
the following relationship for the damping-moment coefficient for pitch-
ing about the leading edge can be deduced:

[cCmcm.' =Ca [~+ t] 0[ 1+ fOM xM 2 N-2] 1
2- 0

2  J3

where imq+C - is the damping-moment coefficient obtained from the

linearized theory and
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N =- 2
2 0

X = 1 for biconvex airfoils

X for double-wedge airfoils

The trend of the damping-moment coefficient with thickness obtained from
this result agrees closely with that obtained in the present paper.

EXPERIMENT

Wind Tunnel

The experimental investigation of the damping-in-pitch character-
istics of the various model configurations was conducted in the
Ames 6- by 6-foot supersonic wind tunnel. In this tunnel, the Mach num-
ber can be varied continuously within the subsonic speed limits 0.60 to
choking, and at supersonic speeds from 1.20 to 2.00. The total pressure
can also be changed at any time within the limits 3 pounds per square
inch absolute to atmospheric. A complete description of the wind tunnel
is given in reference 28.

Models

The pertinent dimensions of the five wing-body configurations
investigated in the present report are shown in figure 8. All the wings
had sections which were symmetrical in streamwise planes and 3 percent
thick. Wings having leading-edge sweep angles less than or equal to 450
(wings c, d, and e in fig. 8) had biconvex circular-arc sections in
streamwise planes with maximum thickness at 50-percent chord. Wings
having leading-edge sweep angles greater than 450 (wings a and b in
fig. 8) had NACA 0003-63 sections in streamwise planes. The wings were
identical in plan form and section shape to those investigated in the
series of force tests reported in references 29 to 33. Strength consid-
erations required that wings c, d, and e be built of steel. Wings a
and b were built of aluminum.

The models were fitted with bodies such that the distance from the
apex of the body to the wing-body intersection was the same for each
model. Also, the ratio of wing area to body maximum cross-sectional area
was 17.9 for each model. Forward of the point of maximum radius, the
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bodies were of thin laminated wood construction and were identical in
shape to those of references 29 to 33. The aluminum afterbodies were
cylindrical in shape and terminated at the trailing edges of the wings
to permit the models to be deflected with sufficient amplitude when
mounted on the support structure.

Model Support System

The support system used in the present investigation was the same
as that developed for the single-degree-of-freedom free-oscillation
experiments of reference 10. The interested reader is referred to that
report for a detailed description of the oscillation mechanism. For
the present tests, two changes were made in the system which served to
improve the accuracy of the data. The changes and the reasons for them
are as follows:

1. The vertical flexure pivots which provided vertical restraint
in the tests of reference 10 were replaced by bearings after it was
found that the heavier models of this investigation caused the pivots
to twist laterally when the model was given its initial displacement.
An undesirable yawing oscillation was thereby induced which destroyed
the linearity of the system. Installation.of the bearings entirely elim-
inated this yawing tendency. The damping due to friction in the bearings
was somewhat larger than that of the flexure pivots, but by frequent
checking of the wind-off damping and regular replacement of the bearings
it was possible to maintain the tare damping well within acceptable
limits.

2. A stiffening strut was installed between the sting support and
the tunnel ceiling in order to remove the possibility of coupling between
the model oscillation and the resonant mode of the sting support. The
influence of the strut on the aerodynamic forces at subsonic speeds was
investigated by removing the strut and recording data for one of the
models at a frequency sufficiently below the sting resonant frequency to
avoid excessive sting vibrations. Results obtained with the strut
installed and removed agreed within the experimental accuracy.

By effectively eliminating both yawing tendencies of the model and
vibrations of the sting support, it can be seen from comparison of the
present results with those of reference 10 that the deviations between a
number of observations at a given Mach number were markedly reduced.
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Scope of Tests

Investigation of the damping-in-pitch characteristics of the various
model configurations was conducted over a supersonic Mach number range
of 1.20 to 1.90 and, where possible, over a subsonic Mach number range
of 0.60 to 0.90. The Reynolds number for the major portion of the tests
was held constant at 1.6 x lO per foot. Additional data for one of the
models was obtained at Reynolds numbers of 1.0 x 106 per foot and
3.2 x 108 per foot.

All the tests were conducted with the models at a mean angle of
attack of 00, the angle being measured from tue mean line of the sting
support to the axis of the test section. For each oscillation, an ini-
tial displacement of ±50 was imparted to the model by means of the
pneumatically actuated pawl arrangement described in reference 10.

Other important variables are listed below for the five wing-body
configurations investigated:

Range of moment Axes of
of inertia, rotation, Range of reduced

Model slug - ft2  % M.A.C. frequency

A = 2 triangular 0.0534 - 0.0589 35, 45 0.012 - 0.037
A = 3 triangular .0368 - .0402 25, 35 .018 - .050
A = 4 triangular .0491 - .0512 25, 35, 45 .007 - .o41
A = 3 swept .0549 - .0576 25, 35 .011 - .025
A = 3 unswept .0422 - .o488 20, 35, 40 .007 - .025

Reduction of Data

The technique used in this investigation for reducing an experi-
imental oscillation-decay record to the damping-in-pitch coefficient
Cm_ + Cn% was identical to that described in reference 10. Briefly,
ths technique involves plotting the envelope of the oscillation-decay
curve against time on semilogarithmic graph paper. If the damping of
the system is a linear function of the angular velocity, this plot will
be a straight line, the slope of which is proportional to the damping
term. Calibrations for the model moment of inertia and the damping due
to internal friction, and standard measurements for the density and
velocity of the air stream then enable one to reduce the aerodynamic
damping term to coefficient form. The aerodynamic restoring moment Cm%
can be obtained from measurements of the frequency of oscillation and
a calibration for the static spring constant of the system. Results for
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the restoring moment about two axes of rotation a known distance apart
then permit calculation of the lift-curve slope CL=.

Corrections to Data

No wind-tunnel-wall corrections were made to the subsonic results
for any of the measured stability derivatives. To the author's knowl-
edge, no corrections have been developed for application to the forces
acting on a finite-span wing oscillating in a compressible fluid.
Tunnel-resonant-frequency effects were investigated by use of refer-
ence 34, and it was found that the range of frequencies used in this
investigation was well below the lowest calculated tunnel resonant fre-
quency. In view of the fact that the subsonic damping moments measured
for the A = 4 triangular wing in the present investigation agreed
reasonably well with the results for a similar wing obtained during an
investigation in the Ames 12-foot wind tunnel (ref. 35), it is believed
that the effect of the tunnel walls on the damping in pitch was not
significant.

A subsonic correction could have been made to the static parameters
CLaand Cm,. However, since this correction would have been very small,

and in view of the uncertainty involved in applying static corrections
to the results of dynamic measurements, it was decided not to make the
correction.

The effects of constriction of the flow at subsonic speeds by the
tunnel walls were taken into account by the method of reference 36.
This correction amounted to, at most, a 2-percent increase in the Mach
number and in the dynamic pressure over that determined from a calibra-
tion of the wind tunnel without a model in place.

For the tests at supersonic speeds, no corrections were required to
be made on either the aerodynamic measurements or the air-stream
properties.

The reader is referred to reference 10 for a discussion of the
precision of the data. Since the method of reduction of the data was
the same as that of reference 10, the uncertainty in the recorded value
of a given damping coefficient remained of the order of ±0.02. However,
by virtue of the elimination of yawing tendencies in the model and sting-
support vibrations, the standard deviation of a number of observations
at a given Mach number was reduced from ±0.06 to ±0.03.
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RESULTS

Damping Coefficients

The basic experimental results for the damping coefficient Cmq+Cm&
for the five wing-body configurations investigated are shown in fig-
ures 9 to 13. In cases where data could be obtained at subsonic as well
as supersonic speeds, these results are shown plotted through the Mach
number range 0.60 to 1.90 for ready comparison of the magnitudes of the
coefficients in the two speed ranges. Also shown plotted in figures 9
to 13 are the theoretical results for the damping coefficient Cmq + Cm(I
at supersonic speeds for the wings alone. In addition, theoretical
results for the triangular wing-body combinations, considering inter-
ference effects, are shown in figures 9 to 11. The sources of these
theoretical results are references 11, 16 through 23, and 37. The exper-
imental results for subsonic speeds are not compared with theory, since
a rigorous linearized theory for triangular, swept, or unswept wings
oscillating in a subsonic compressible flow has not yet been developed.
A very approximate analysis for Cmq and Cm& for the aspect ratio 4
triangular wing was presented in reference 10. In this development, the
parameter Cm& was approximated using the incompressible theory of ref-
erence 8 for the elliptic wing. However, a more rigorous analysis for
the elliptic wing in compressible flow (ref. 11) has indicated that the
result of reference 10 for Cm, may be incorrect. The good agreement
between the experimental subsonic results of reference 10 and the sub-
sonic theory of reference 10 may be fortuitous.

The results for the three triangular wings (figs. 9 to 11) and the
swept wing (fig. 12) show that in the supersonic speed range, in every
case, the linearized first-order-in-frequency theory provides a reliable
guide for obtaining both the magnitude and trend with Mach number of the
damping coefficients. Of particular importance are the theoretical
predictions of ranges of Mach number over which the wings could experi-
ence negatively damped oscillations. The experimental results for
the A = 3 triangular wing (fig. 10) are inconclusive in this regard
since the theoretically predicted unstable range occurs in the low super-
sonic Mach number range, 1.0 to about 1.08, where it was not possible to
obtain data. The predictions by the theory of larger unstable ranges
for the A = 4 triangular wing and the A = 3 swept wing were borne out
by the experimental results, as shown in figures 11 and 12 by the exper-
imental points plotted below the abcissas. In the absence of available
theoretical results for unswept wings, the experimental results for the
unswept wing are compared with theoretical damping coefficients for a
rectangular wing of aspect ratio 3 (fig. 13). It is seen from examina-
tion of figure 13 that the theoretical prediction of a rather large
region of instability for an axis of rotation at 0.20E (fig. 13(a)) is
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borne out by the experimental results but that the theory fails to pre-
dict the reversal in trend of the damping coefficients at low supersonic
Mach numbers for axes of rotation closer to the aerodynamic center
(figs. 13(b) and (c)). It is clear from these results that the effects
of taper can be important and should be considered for an accurate theo-
retical appraisal of the damping-in-pitch characteristics of unswept
wings.

It should be mentioned that at a Mach number of 0.90, the damping
of the A = 4 triangular wing (fig. 11) and the A = 3 triangular and
swept wings (figs. 10 and 12) were highly nonlinear with angle of attack,
being stabilizing for angles of attack of 50 and decreasing steadily to
zero at about 10. The dashed lines for this Mach number shown in fig-
ures 10, 11, and 12 are intended to indicate the range of this nonlinear
variation. Further discussion of the phenomenon is withheld to a later
section of this report. The above-mentioned difficulty was not encoun-
tered with the A = 2 triangular wing, and the value of Cmq + Cm&
at Mo = 0.9 for this wing (fig. 9) represents the damping throughout
the amplitude range. Subsonic results for the unswept wing could not be
obtained due to the highly erratic behavior of the aerodynamic restoring
moment which generally was so strongly destabilizing as to counterbalance
the spring restoring moment and force the model against its stops.

Reynolds Number Effects

For the A = 2 triangular wing at supersonic speeds (fig. 9),
damping coefficients have been obtained at three Reynolds numbers rang-
ing from 1.18 X 106 to 3.77 X 108, while at subsonic speeds (fig. 9) they
have been obtained at 1.18 X 106 and 1.89 x 108. In both cases, it is
evident that at least within the range of Reynolds numbers at which data
were recorded there is no significant effect of scale. It is reasonable
to assume that a similar lack of scale effects exists for the other wings
as well.

Aeroelastic Effects

In figures 14 to 23, the static parameters Cm and CL, for the
five wings are compared with force-test measurements of similar wings
(refs. 29 to 33). Such a comparison is useful as an indication of the
importance of aeroelastic effects on the aerodynamic properties of the
less rigid models of the present tests. The fact that at supersonic
speeds there is excellent agreement between the two experiments for the
lift-curve slope CjL, whereas the present results for Cm. are
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consistently smaller, is attributed primarily to the difference in the
body shapes of the models of the two investigations. In the force-test
investigation, the afterbodies were carried beyond the trailing edges of
the wings, which would tend to shift the centers of pressure of the wing-
body combinations farther rearward while leaving the total lift essen-
tially unchanged. From this reasoning, it is concluded that aeroelastic
effects on the aerodynamic coefficients of the present tests are of
secondary importance. At subsonic speeds, there are differences in mag-
nitude of both CL, and Cn. However, in view of the fact that no large
effects of aeroelasticity were found at supersonic speeds where the
dynamic pressure is greatest, it is believed that the differences
in CL, and C% at subsonic speeds are not due to aeroelastic effects.

It must therefore be stated that at the present time the differences at
subsonic speeds are not understood.

Transfer of Axes

Sufficient information has been given in figures 9 to 23 to permit
the transfer of the damping-in-pitch results at supersonic speeds to
axes of rotation other than those used during the tests. Such a trans-
fer, if valid, of course greatly increases the range of applicability
of the given data. The validity of the transfer equation (given in
appendix A) depends primarily on the invariance of the stability deriv-
atives with changes in angle of attack and angular velocity and could be
best checked by experimental means. Checks on the method are provided
in figures 11(c) and 13(c) for the A = 4 triangular wing and A = 3
unswept wing, respectively. Shown in these figures are the experimental
damping coefficients obtained during the investigation and coefficients
for the same axis position computed, by means of the transfer equation,
from the results of experiments at two other axis positions. It is
evident that the transferred results portray the actual data with suffi-
cient accuracy to establish the validity of the method.

DISCUSSION

Effect of Aspect Ratio

It will be remembered from the discussion in the theoretical section
of this report that the linearized theory indicates that a decrease in
aspect ratio has a highly stabilizing effect on the damping in pitch of
a triangular wing with subsonic leading edges. This indication is con-
firmed in figure 24, wherein the damping in pitch is shown as a function
of Mach number for the three triangular wings having their axes at 0.35 .
It is noteworthy that the A = 2 wing shows no tendency toward dynamic
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instability in the Mach number range 1.2 to 1.9, that for Mo< 1.2 the
trend of the damping coefficients of the A = 3 wing is toward insta-
bility, and that a range of instability exists for the A = 4 wing. It
is of further interest to note that for Mach numbers greater than 1.67,

in which range the leading edges of the A = 3 and A = 4 wings are

supersonic, the damping coefficients for these wings are essentially the
same. This serves as a partial confirmation of the theoretical predic-
tion of reference 19, wherein it is shown that the damping coefficients
of triangular wings having supersonic leading edges are independent of
aspect ratio.

A more comprehensive way of comparing the tendencies of the wings
toward dynamic instability would be to show the entire ranges of axis
positions and Mach numbers over which dynamic instability is possible,
that is, to plot the stability boundary curves for the three wings.
In the Mach number range 1.2 to 1.9, however, only the A = 4 wing has
a region of instability and this curve is shown, compared with the theo-
retical curve, in figure 25.

The preceding comparison (fig. 24) was useful primarily for verify-

ing the theoretical prediction regarding the role played by aspect ratio

in determining the tendency of a triangular wing toward dynamic instabil-

ity. A comparison of the actual magnitudes of the damping roments was

masked, however, by the fact that the coefficients for the three wings

were referred to their own respective characteristic lengths. In the

following comparison, an attempt is made to overcome this difficulty by

posing the question: Given three triangular wings of aspect ratios 2, 3,
and 4, of equal area, and required to have the same restoring moment

(in ft-lb) at a Mach number of 1.4, how do the physical magnitudes of
the damping moments compare? For this purpose, the aspect ratio 3 wing

is chosen as a standard, required to have a static margin of 0.05

at Mo = 1.4, and the damping moments of all the wings referred to the

M.A.C. of the aspect ratio 3 wing. The comparison on this basis is

shown in figure 26. It is evident from examination of figure 26 that on

this basis also, the effect of decreasing the aspect ratio is beneficial
to the damping in pitch, the aspect ratio 2 wing having the largest

damping moments throughout the range of test Mach numbers, and the aspect

ratio 4 wing the smallest.

Effect of Plan-Form Shape

For this comparison, use is made of the results for the aspect
ratio 3 triangular, swept, and unswept wings. First, the prediction
made in the section entitled "Theory" regarding the tendencies of

three similar wings toward dynamic instability is examined by comparing

their stability boundaries. From the preceding section, it will be
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recalled, however, that no region of instability exists for the A = 3
triangular wing in the Mach number range 1.2 to 1.9. It is apparent,
therefore, that as predicted by the theory the triangular wing is
superior in this regard. The stability boundary curves for the swept
and unswept wings, with axis position referred to the leading edge of
the M.A.C., are compared in figure 27. Again, the theoretical predic-
tion is borne out for, as seen in figure 27, a considerably larger region
of instability exists for the unswept wing.

Next, the magnitudes of the damping moments are compared by choosing
the A a 3 triangular wing as a standard, with a static margin of 0.05
at Mo = 1.4, and, as in the previous section, requiring that the wings
have equal restoring moments at this Mach number. The comparison is
shown in figure 28. On this basis, it is again apparent that the trian-
gular wing is the superior wing, followed in order by the swept and
unswept wings.

Notice in figures 26 and 28 that since the damping coefficients of
all five wings investigated are referred to the M.A.C. of the A = 3
triangular wing and since all wings have equal restoring moments at
Mo = 1.4, the results of figures 26 and 28 may be compared directly.
Here it appears that the A - 2 triangular wing is the most desirable
wing from a longitudinal-dynamic-stability standpoint, and the A = 3
unswept wing the least desirable. As mentioned previously, however,
it should not be inferred that the result of this comparison implies
a recommendation for the use of triangular rather than unswept wings.
Obviously, the addition of tail surfaces could alter considerably the
relative damping-in-pitch merits of the wings investigated.

Effect of Thickness

It has been shown by the results of experiments (figs. 9 to 12)
that the supersonic linearized potential theory provides a reliable
basis for predicting the low-frequency damping-in-pitch characteristics
of thin wings of finite span. Considerable doubt has been shed, however,
over the ability of the linearized theory to predict the dynamic behavior
of wings that cannot be classified as thin. In recent years, a number
of reports have been issued (refs. 25, 26, and 38) which indicate that
second-order thickness effects have a profoundly stabilizing effect on
the damping in pitch of two-dimensional wings. In particular, refer-
ence 26 indicates that by increasing the thickness of an infinite-span
wing from zero to only 4-1/2 percent, the rather large region of insta-
bility predicted by the linearized theory is completely eliminated. In
contrast to these results, the approximate analysis of this paper
(see Theory) indicates that thickness effects are relatively small, the
destabilizing effect on Cmq being partially canceled by a stabilizing
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effect on Cma. In view of these conflicting results, it is of some
interest to obtain additional experimental data which would serve to
clarify the issue. Of particular interest are the effects of thickness
for finite-span wings. In this case, a limited comparison can be made
between the experimental results for the 3-percent A = 4 triangular
wing of this report and the results of reference 10 for two 6-percent
triangular wings having the same aspect ratio. Aside from the differ-
ences in profile and small differences in the dimensions of the bodies,
the models and test conditions of the two experiments were almost iden-
tical. The comparison is shown in figure 29. It is seen that for this
wing, the effects of thickness are small and are in the direction of
decreasing stability with increasing thickness. Of primary importance
is the fact that all the wings exhibit regions of Mach number over which
dynamic instability is experienced.

Although admittedly the experimental evidence in figure 29 is not
conclusive, nevertheless in the light of these results it is difficult
to accept those results which indicate that large stabilizing effects of
thickness are present on infinite-span wings, especially in view of the
fact that the behavior of a triangular wing with supersonic edges is in
many ways quite similar to that of an infinite-span wing.

Effect of Nonlinearities

From examination of the experimental oscillation-decay records at
both low subsonic and all supersonic speeds, it was evident that the
assumption of a linear second-order system was well justified. Aside
from a moderate amount of scatter, a decay curve could be fitted by an
exponential curve over a wide range of amplitudes, verifying that the
damping parameter was essentially independent of amplitude. At high sub-
sonic speeds, however, this linear behavior was no longer true for most
of the wings tested. As an example, figure 30 shows the oscillation-
decay record for the A = 3 triangular wing at Mo = 0.90. It is seen
that after an initial displacement the amplitude of oscillation quickly
dies out to a low level, but there sustains itself indefinitely.
Similar phenomena have also been reported in the forced oscillation
experiments of reference 35 for a wing-body combination having a trian-
gular wing of aspect ratio 4 and in flight tests of various high-speed
aircraft, particularly tailless aircraft. The deleterious effects of
such sustained oscillations on the qualities of an aircraft as a gun
platform or from a structural standpoint are obvious. It is therefore
of considerable importance to gain an understanding of the phenomenon,
with a view toward advancing means of eliminating it.

At the present time, insufficient information, either theoretical
or experimental, is available to enable a complete and authoritative
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description of the physical event; a tentative hypothesis is therefore
advanced instead, which would appear to fit the observed facts. It must
be emphasized, however, that in the light of additional information, the
assumptions and conclusions drawn here may require considerable revision.

Specifically, the observed facts are these: (1) The damping
coefficient is highly nonlinear, being negative or stabilizing for angles
of attack greater than about 10, and zero at 10. The possibility that
the nonlinearity is caused entirely by scale effects and/or wind-tunnel-
wall interference is ruled out by the fact that similar behavior is
observed in full-scale flight tests. (2) The frequency of oscillation
is essentially constant throughout the amplitude range, implying that
the restoring moment is a linear or nearly linear function of the angle
of attack.

From these observations, it is hypothesized that the characteristic

differential equation governing the motion is of the form

RE + (P (m,d) & + K2a, = 0

where q(c,&) represents the damping coefficient as a nonlinear function
of the angle of attack and angular velocity, and I and K are constants.
It is therefore necessary to search for a mechanism that can affect the
damping moment to a much larger degree than it does the restoring moment.
In this regard, it is pertinent to first review some of the character-
istics of wings in steady transonic flow. It is well known that at high
subsonic Mach numbers, the essential feature of the flow is the appear-
ance of shock waves on the wing as the speed of air over the wing surface
exceeds the local speed of sound. These shock waves cause large changes
in the pressure and also promote flow separation near the shock wave,
due to the presence of adverse pressure gradients. The effects of these
disturbances on the pitching-moment characteristics of an unswept wing
of aspect ratio 3 are shown in reference 39 and reproduced as curve (a)
in sketch (ee). Notice that GM
the slope of the pitching
moment is positive for small (a) basic wing
angles of attack, indicating (b) modified wing a
that the aircraft would be
statically unstable in that
range. It was also illus-
trated in reference 39 that
by reducing the curvature of
the wing profile near the
trailing edge, thereby Sketch (ee)
reducing the tendency toward separation, the positive slope through zero
could be eliminated. This result is shown as curve (b) in sketch (ee).
By virtue of the beneficial effect of reducing separation, it is argued
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here that in the absence of separation and strong shocks on the basic
wing, the variation of pitching moment with angle of attack would be
nearly linear, as shown by curve (a) in sketch (ff), and that the effects

of these disturbances can
be lumped into an additional

m bsic WOO moment variation, curve (b),
such that the sum of (a)
and (b) then gives the

----- W ..... observed nonlinear variation.

)+(i)"  For triangular wings,
the reversal in slope of the
pitching moment at small

Sketch (ff) angles of attack does not
appear (see refs. 29, 30,

and 31). This, however, does not preclude the presence of the nonlinear
variation due to separation. For a triangular wing with center of grav-
ity at, say, the quarter M.A.C. point, the slope of the pitching-moment
curve can be quite large. As seen in sketch (gg), the linear varia-
tion (a) can then greatly outweigh the effect of the nonlinear curve (b),
with the result that a scarcely evident nonlinearity appears in the
combined curve.

Cm  The preceding examples were taken from the
%results of static measurements, where the angle

% of attack is simply the angle between the chord
(a) line of the wing and the free-stream direction.

607) +( W %When the wing is oscillating, however, each
.....____ . _ point t measured from the axis of rotation

aON experiences an additional angle of attack
(&/Vo, due to the angular velocity. Then if
the steady-state pitching-moment variation
caused by the separation (curve (b) in
sketch (gg)) is approximated in the range
O<a<amax by

Sketch (gg)

C3(cL) =am, ba.3

in the unsteady case it isp

Cm (I [a, + (54)
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where now g is assumed to be the distance from the axis to the point
at which the additional lift due to separation is concentrated.9 Now,
since for slow frequencies &9/vo  is much smaller than m, all but
first-order terms in . are neglected so that equation (54) becomes

Cm = m [a-b 2] + &4 [a-3be2 ] (55)
V0

The characteristic equation of motion then becomes

I - 2 [Cmq+m + c [a-3ba2] a {Cm+[a-baL] 0 (56)

where [Cmq+Cm&] and Cma are the (constant) stability derivatives which
would be present in the absence of separation. Thus, it appears that
although the effect of the nonlinearity on the restoring moment can be
insignificant, the possibility still remains that the damping moment can
be profoundly affected in the event that [Cmq+Cm4] is sufficiently small.
Notice that when [C +Cm] + 2ga/ is greater than zero and if the non-
linear term in the restoring moment can be ignored, equation (56) takes
on the form

-24(l-p 2) + K2 = (57)

Equation (57) is then recognized as being the well-known Van Der Pol
equation of nonlinear mechanics. It is evident that for small values
of a the damping term is negative, leading to a divergent oscillation,
whereas for larger m, the damping term is positive. A stable regime
therefore will exist where m = V1T7 and oscillations of either large
or small amplitude will converge to that regime.

Thus, by the assumptions of an additional nonlinear pitching-moment
variation caused by flow separation and a sufficiently small damping
moment in the absence of separation, the observed phenomenon of a small-
amplitude self-sustained oscillaticn can be hypothetically explained as
being due to the destabilizing effect of the nonlinearity in the restor-
ing moment on the damping moment.

9 It is recognized that usually the nonlinear effects of shock-wave
boundary-layer interaction and flow separation are markedly reduced
during nonsteady motions. However, for the low-frequency oscillations
of the present tests (of the order of one cycle per 100 chord lengths
of travel), it is believed that the effects of separation, though per-
haps less severe than for the steady case, are nevertheless still
present.
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CONCLUSIONS

The results of a theoretical and experimental investigation of the
single-degree-of-freedom damping in pitch of a series of low-aspect-ratio
wing-body combinations made at subsonic and supersonic speeds lead to the
following conclusions:

1. In the Mach number range 1.2 to 1.9, theoretical and experimen-
tal values of the damping-in-pitch coefficient Cm + Cm were in good
agreement for triangular wings of aspect ratios 2,3, and 4, and swept
wing of aspect ratio 3.

2. Theoretical predictions of the existence of ranges of center-
of-gravity positions for a range of Mach numbers greater than 1.2 over
which dynamic instability may be expected for the aspect ratio 4 trian-
gular wing and the aspect ratio 3 swept and unswept wings were confirmed
by the experimental results.

3. The prediction by the theory of the beneficial effect on the
damping in pitch at supersonic speeds of a reduction in aspect ratio was
borne out by the results of experiments for the triangular wings having
aspect ratios 2, 3, and 4. In the Mach number range 1.2 to 1.9, the
aspect ratio 2 wing had the largest damping moments throughout the range
of Mach numbers and the aspect ratio 4 wing, the smallest.

4. Experimental results for the stability boundaries in the super-
sonic speed range of three wings of aspect ratio 3 having triangular,
swept, and unswept plan forms confirmed the theoretical prediction
regarding the relative magnitudes of the region of Mach number and
center-of-gravity position in which dynamic instability could be experi-
enced. In the Mach number range 1.2 to 1.9, no region of instability
existed for the triangular wing. The region of instability for the
vnswept wing was considerably larger than for the swept wing.

5. The effects of profile thickness on the damping in pitch at
supersonic speeds of triangular wings of aspect ratio 4 and thickness
ratios of 3 percent and 6 percent were found to be small and in the
direction of decreasing stability with increasing thickness ratio.

6. The occurrence at a Mach number of 0.9 of small-amplitude self-
sustained oscillations of the triangular wing of aspect ratio 4 and the
triangular and swept wings of aspect ratio 3 was attributed to a desta-
bilizing effect on the damping moment of nonlinearities in the aero-
dynamic restoring moment.

Ames Aeronautical Laboratory
National Advisory Committee for Aeronautics

Moffett Field, Calif.
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APPENDIX A

TRANSFER OF AXES

The problem to be solved may be posed as: Given the damping
coefficient Cmq + Cm& and the restoring-moment coefficient Cmm about

two axes of rotation, a known distance apart, find the damping coefficient
about an arbitrary axis.

For single-degree-of-freedom rotary oscillations about axis (1) the
damping coefficient is written as

[Cm q + cm& 11 = [Cmq + Cm~1 + 2-R1[Cc.1 - i1[*CLq + C4610 - 27CI 2 C1'M (Al)

where the axis (o) is chosen as a reference axis, I Cmq + Cm] 1 is known,

and xl is the known (nondimensionalized) distance of axis (1) ahead of
axis (o). For pitching about axis (2), the damping coefficient is

[Cmq+ Cm. = [Cmq + Cm&]o + 2x{Cm] O - X{CLq + CL] - 2j 2
2 CLM (A2)

where [cmq + cma,] and R2 are known.

The relationship of the axes (1) and (2) to the reference axis (o) is
shown in sketch (hh). Note that if the reference axis (o) is chosen to
be coincident with the axis passing through +1 -
the aerodynamic center, then the quantities

2iL [C] and 252 [Cma] in equations (Al)-

and (A2) are zero. Since Cm 1 and CM) Mt (0)
Cm2 Sketch (hh)

are known, the parameters CL, and CM may be determined from

C N EIA 2  (A3)

[C.] 0= [CM11 + Rc,
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With CL and [Caj determined, it is now possible to solve equa-

tions (Al) and (A2) simultaneously.

Let [Cmq + Cm&] = a

[crq + ] ; = b
2 ]=

2C = d

0.1= ja-b - c[ 1 - x2] + d[[ 12 - x2 ]1

Then CLq + CL =- je c = e
IC 1 1 2(A4)

[Cmq + Cm6] = a - x[c-e] + d3E1  = f
0

The damping coefficient about an arbitrary axis, with R referred to
axis (o) and measured as positive ahead of axis (o), is therefore,

[Cmq + I= f + c - ie - R d (A5)
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Ax/s

A 83.0 4 ar45e
raper ratio z.4

4 Note: Axes are non-
dimfensionalired with
respect to MAC. of

-AA&.tinglr2ig

0

.4 

____

t.o. 1.2 4.3 1.4 45
Mach nuraber, AV*

Figure 2. - Comparlson of theoretical single -degree -of-freedom
short-period Pitching stability boundaries at supersonic
speeds for three wings of aspect ratio 5, having

trianguar,. swept, and rengular p/do forms.
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-. 8 -**- k'.067
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MAc/P iMwbi'r, m

FIgUre 3. - rhe effect of frequency on the theoretical Single -
degree - Of - freedom short -period pitching stability
be nder/es of supersenic speeds fer a fr/en qatar win,

of aspect retio 4.
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boading edre .. I
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Teqcs 5

0 .04 .06 .12 .16
Reduced frequency,, /V

Figure 5. - The variation with reduced frequency of the
single - degree - of - freedom rotary damping - moment
coefficient for the two - dimensional wing at Mach
nmbers 0,, 0.50, and 0.90. Axis ot leading edge,
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Figure 5. - Conlirwued.
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Experiment:
a R'.IxlO8 A2

O R'189xl00 Axis at .35C

Theory: -

-1.6 Theory, wing alone

*D / .Theory, wing * bod

-1.2 -interference

-. 4

.4

.6 . t 12 1.4 1.6 i.f 2.0
Mach number, M

(a) Axis ot 0. 35C

Figure 9.- Experimenl damping-in-pitch coefficients for the wing - body
combination having a triangular wing of aspect ratio 2.
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Experiment:
* R, 18x0' A2

o R'I.89x10* AXis at .45e

Theory: -

-2.0

Theory, wing alone
-t.2 /  heory, wing I body

_ interference

-.8

Cm + Cm
-. 4

0

.4

.8

I.E
.6 .5 to 12 1.4 1.6 i.8 2.O

Mach number, M

0) Axis at 0. 45e.

Figure 9. - Concluded.
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Experiment:
o R-l.54xlO*

Theory: Axis at .25e

-2.0

-/.6

-1.2 Nonlinear
voriation , Theory, wing alone
,-50toI* and wing 4 body +/__ interference

.4

.4

t2 t'.6 .8 to 12 /..4 16 to go

Mach number, M

(a) Ax/s at 0.251.

FOe /0.- Experimental danping -in -pitch coefficients for the wing-

body comb/nat/on hawng a triongular wing of aspect ratio 3.
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Experiment:
o RL.54xlO

A'3
Theory : Axis at .35e

-2.0

-1.6

-1.2

-. 8 itreec

-. 4

0

.4

.8
1.2

.6 .8 /0 12 1.4 L6 8 2.0
Mach number, A*

(Mi Axis at 0.5er.

Flgre /0.- Concluded.
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Experiment:
o R 133x108

Theory: -A4

AxIs at.25e

-to.

-1.6 T

I Theory, wing + body +
-. 8 Iinterference

Cq +T~t heory, wing alone
-.4 Nonlineor

variation,

0

.4

.8

I.E

.6 .5 £o 2 1.4 Z6 to 2.0
MAch nuwber, M

(o) Axis at 0.25C.

Figure I. - Experimental daning- in- pich coefficients for the wing -
body combination having a triangular wing of aspect ratio 4.

CONFIDENTIAL



84 CONFIDENTIAL NACA RM A52LO4a

Experiment:
o R. .33x10 e

A&4Theory. -- 4
Axis at .35e

-2.0 T
-1.6 __ T __ __

-1.2
Theory, wing + body +

interference
-. 8 4

mq m Theory wing aloneCmq + Cmdc Nonlinear . ._

-. 4 variation
-5'to /11

00
o - - - -

.4

.8

1.21
.6 .8 /.0 1I 1.4 1.6 1.8 2.0

Moch number, M

(b) Axis at 0.35g.

Figure II. - Continued.
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Experiment:
0 R'l.33xlO*

Theory: A & 4
Axis at .45f

-2.0

-I.6

-1I.2

calculated from
.\ experimental results for-.8 \.25,F ond .35e.

0

24 rheory, wing alone
Theory, wing + body +

interference
.8

1.2-
.6 .8 /.0 /.2 1.4 1.6 1.8 2.0

Mach number, M.

(C) Axis of O. 45e.

Figure It.- Concluded.
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Experiment:
0 R'l.22106

Theory.: '
Axis ao .25/

-2.0 T

-1.6 -4-

-. 8 Theory, wing o/one

Nonlineor

.4 vriaion,
a 5* to

.4

.8

1.2
.6 .8 1.0 1.2 1.4 1.6 L 2.0

Maoh number, Mo

to) Axis of 0.$251r

Figure 2. - Experimental damping-in-pitch coefficients for the wing-
body cominfation having o swept wing of aspect ratio 3.
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Experiment:
0 R'l.22xlO

Theory. A, 3

Axis at.3e

-2.0

-/.6

-. 8 _ Theory, wing alone
Cmt + Cm . '

q x~_

-. 4 -0
0

0

.4

.8

12
.6 .8 to t.2 k.4 /6 to 2.0

Moch number, Mo

(hi Axis of 0.351.

Figure 2. - Concluded.
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Experiment:
o R l.22x/O

A '3
Theory. - Axis o .35

-2.0

-1.6

-1.2

-. e _ Theory, A - 3 rectangular

-. 4

0- -

.4

.6 .8 .0 1.2 1.4 1.6 .S 2.0
Mach number, Mo

(bj Axis e 0.351.

FIgure .I- Aotiuled.

CONFIDENIgTAL



90 CONFIDENTIAL NACA RM A52LO4a

Experiment:
0 Rl.22xl0

A 3
Theory. - Axis ot ..40e

-2.0

Calculated from
experimental results

-/.2 for .20e and .351_

Mtt
-. 8

-. 4 _ _-~ _ _ ..

0
Theory, A, 3

.0

1.2
.6 .8 .0 12 1.4 .6 .S 2.0

MOch number, M

(c) Axis of 0. 401r.

Figure 13.- Concldued.
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Experiment:
* R '.18xlO f A

* R'.89x0' Aa2

'> R.3.77x10'

Force test data,
NACA RM A50K24a

-1.2

-to

-. 8

.6
Axis ot .35e

-. 4-V_ IJ jisa.35! e o €-;-- j
-. 2 #Axis at. 45e

0

.2
.6 .9 1.0 .2 1.4 1.6 1.a 2.0

Mach number, m

Figure 14. - Experimental pitching - moment -curve slopes for the wing -
body corlhnation hoving a triangular OWng of aspect ratio 2.

Axes of rotation at 0.35F and 0.45!.
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Experiment:
a R-.I54xlO/, axis at .25" I

o R't54xlO oxis at.35i" A-5

--- Force test data,
NACA RM A51HO2 --

-/.0

-. 8 - -(

-/.4

-. 2Axis 0t.35

0

.2 .6 .8 1.0 1.2 .4 1.6 1.9 2.0
Mach nmber, M

Figure 15.- Experimental pitching - moment -curve slopes for the wing-
body combination having a triangular wing of aspect ratio 3.

Axes of rotation at 0.25e and 0.350.
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Axperiment:
0 R&1.33xlO, axis ot.25- I

0 R,'33x10#ois of.35 e A,4

R-l.33x/0, oxis at.45e

----- Force test data,
NACA RM A 5ID30

-1.2

-. 8

CMC Axisat .25e

-. 4

Axis at .35e
-. 2 -3-

0o -, 74 1Fiu .

Axis at .454

.21
.6 .9 1.0 1.2 1.4 16 i.e 2.0

Mach nuAW1 Mo

Figure /6. - Experimental pitching -moment -curve slopes for the wing-
body combination having a triongular wing of aspect ratio 4.

Axes of rotation Ot 0.25C, 0.351r, and 0.451.
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Experiment:-
0 R '122x10 e , axis at .25e

R-L22x/0 , axis o .351 A&3

Force test dae,
NACA RM A5IHIO

-1.2

-/.5

-. 6
Axis at .251

-. 4

Axis of .351 
ri

.2
.6 .8 to 1.2 .4 1.6 1.8 2.0

MAch nMer, m,

Figure 1. - Experimenfol pitching-moment -curve slopes for the wing -

body combination having a swept wing of ospect ratio 3.
Axes of rotation at 0.25C and 0.35.
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OR , 1224I0' ads at .201r

*D RaL22x1/,ejSvf.35 Av3
oR,122xIO", axis iof "

ForPce test dwi,
NAGA RNf AMN28

-. 4

IAxis at .20e

-. 291...

*G 0

6 8 . / 4 16 1.9 .
Nuch MON#e, No

Fig.,. I.- Eqedmentul pitching-momm -curve slopes for the wing-
body comb/a isohving an vnsweP wing Of aspect iwtio 3.

Axes of roiatmon at 0.201, 0.5i.w and0401.
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Exeiet

6 j18XO

5 -. 7x~ -

--4oc ls aa
CL"RMAOK4

7

0-
.6 .8 1.0 12 1.4 1.6 18 2.0

Mach mwaber, MV,

Figure 19. - Experimental lift -cwve slopes for the wing -body
combn at/on having a triangular wing of aspect rat 2.
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Experiment:
0 R&l.54x10' A&3

-- Force lest data,
NACA RM AS/H02

6

5

4

3

2 _

0 a

.6 .8 10 1.2 14 16 to .0
Mach number, M,

Figure 20.-Experimental lift -curve slopes for the wing-body

combination having a triangular wing of aspect ratio 3.
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Experiment:
o RrI.33xlO

---- Fffee test data, A 4

NACA RM A5/030

7

0

6

5

4

Cia

3

//

0-
.6 . 1.0 12 1.4 1.6 1 e 2.0

Afth mwtw, O

Figure 21.-Experimental lift -curve sopes for the wing-body
comb'nation having a triangu/or Wng of opect ratio 4.
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Experiment:

e R '.22x10' A&

Force lest dote,
NACA RM ASIHIO

7

6

5

4

3

2

016 1. 1. 1. 1.60.6 .8 to U. 14 16 18 2.0

Mach number, AMO

Figure 22.-Experimental lift -cirve slopes for the wing - body
combnation having a swept wing of #sAt ratio 3.
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Experiment:
o R I.22x06 I A-5

Force test dota,
NACA RM A50K28

7

6

5

4 _"

CLc

00

2O

/

.6 .8 10 12 14 16 IS 2.0

Mach number, Me

Figure 23.- Experimental lift - curve slopes for the wing - body
combination having an unswept wing of aspect ratio 3.
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.6 X0
to -. 15 1.4

Mch number, me

Figure 25. - omporlson of theoretical end experimental sin#M,-

door"e-of - freedom shurt-Period pitching etablifty

boundefrs for a Wive- body combination having a
Irenvuler wke of ompet ret 4.
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Note: M. A. s are equal.
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o \X -N,,-

unstable Stable
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Mach number, M.

Figure 27.- Comparison of experimental single - degree - of -
freedom short -period pitching stability boundaries for two
wing- body combinations having swept and unswept wings

of aspect ratio 3.
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